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Abstract
New completely integrable generalized C. Neumann systems on several symplectic
submanifolds are presented, and the relations between the generalized C. Neumann
systems and the spectral problems are further discussed in this paper. In particular,
a new eigenvalue problem is proposed in Part 3.3.

1 Introduction

Owing to the excellent works of Cao [1,2], the nonlinearization method about a spectral
problem or Lax pair plays a very important part in finding out new completely integrable
systems as many as possible. It is known that the nonlinearized systems of some spectral
problems or Lax pairs depend on some certain constraints between the potentials and the
eigenfunctions. These constraints contain the Bargmann constraint [2], the C. Neumann
constraint [2], and the symmetry constraint [3]. The Bargmann constraints are developed
to construct completely integrable systems in the Liouville sense by several authors [4,
5]. The symmetry constraints reveal the relations between higher dimensional integrable
systems and lower dimensional integrable systems and give a direct method to construct
solutions of higher dimensional integrable systems by solving lower dimensional integrable
systems [6, 7]. Many Bargmann constraints and symmetry constraints have been studied,
and the former reduce (1 + 1)-dimensional integrable systems to finite dimensional com-
pletely integrable systems (see ref. [2, 4, 5]) and the latter reduce (1+2)-dimensional inte-
grable systems to (1+1)-dimensional integrable systems (see ref. [3, 6, 7]). Compared with
the above two such constraints, few C. Neumann constraints and C. Neumann systems are
established. Among already known C. Neumann and C. Neumann systems, there are ones
associated with the KdV hierarchy [2], Jaulent-Miodek hierarchy [2]. Tu Guizhang hierar-
chy [2], coupled KdV hierarchy [4], the hierarchy [8, 15] of evolution equations related with

the novel, spectral parameter dependent Schrödinger equation λΦxx +
m−1∑
i=1

λiuiΦ = λmΦ,

WKI hierarchy [9] and Levi hierarchy [10]. The cause of a small number of C. Neumann
constraints and C. Neumann systems is maybe in the complicated difficult calculations and
some modifications. Especially, some results are sometimes guessed for the C. Neumann
system.
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In this paper, we would like to present some new completely integrable generalized
C. Neumann systems on several symplectic submanifolds according to the Moser con-
straint method [11]. Simultaneously, we shall see that such symplectic submanifolds are
exactly generated by the C. Neumann constraint conditions [2] between the potential
and eigenfunctions of several spectral problems. Particulary, a new eigenvalue problem is
proposed in Part 3.3.

For the convenience of use, in the following we give some fundamental notations and
symbols. Let λj , (1 ≤ j ≤ N) be N different real (or complex) constants, λ1 < λ2 < · · · <
λn, Λ = diag (λ1, . . . , λn). For p = (p1, . . . , pn)T , q = (q1, . . . , qn)T , write the coordinate
space R2N = {(p, q)T } and denote by the differential 2–form ω2 = dp ∧ dq the symplectic
structure in R2N . < ·, · > stands for the standard inner product in R2N . Then, for two
arbitrary functions F , G in the symplectic manifold (R2N , ω2 = dp∧dq), define the Poisson
bracket of them as follows [12]

(F,G) =
n∑

j=1

(
∂F

∂qj

∂G

∂pj
− ∂F

∂pj

∂G

∂qj

)
=
〈

∂F

∂q
,
∂G

∂p

〉
−
〈

∂F

∂p
,
∂G

∂q

〉
.

f , G are called involutive, if (F,G) = 0.

2 C. Neumann system of the Zakharov-Shabat
eigenvalue problem

We have already known the Hamiltonian system (R2N , dp ∧ dq,H) i.e., the nonlinearized
system of the famous Zakharov-Shabat eigenvalue problem under the so-called Bargmann
constraint [1]

(H) :


qx = iΛq+ < q, q > p =

∂H

∂p

px = −iΛp− < p, p > q = −∂H

∂q

(1)

is completely integrable in the Liouville sense and has the Hamiltonian

H = i < Λq, p > +
1
2

< p, p >< q, q > (2)

and the conserved integrals involute in pairs Fm:

Fm = i < Λmq, p > +
1
2

∑
i+j=m−1

∣∣∣∣∣ < Λiq, q > < Λiq, p >
< Λjp, q > < Λjp, p >

∣∣∣∣∣ , m = 0, 1, 2, . . . (3)

Now, we restrict the Hamiltonian system (H) onto the symplectic submanifold defined
by

M2N−2 =
{
(p, q) ∈ R2N

∣∣∣F ≡ 1
2
(< q, q > −1) = 0, G ≡ 1

2
(< p, p > −1) = 0

}
. (4)

On M2N−2, we consider the Hamiltonian H∗ = H − λF − µG, where λ, µ are the
two Lagrange multipliers which are determined by the tangent conditions (H∗, F ) = 0,
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(H∗, G) = 0. It is easy to calculate

(f,G) =< p, q >, (H,F ) = −i < Λq, q > − < p, q >, (H,G) = i < Λp, p > + < p, q >,

λ =
(H,G)
(F,G)

∣∣∣
M2N−2

= i
< Λp, p >

< p, q >
+ 1, µ =

(H,F )
(G, F )

∣∣∣
M2N−2

= i
< Λq, q >

< p, q >
+ 1.

Thus, we have

Proposition 1 The Hamiltonian system
(
M2N−2, dp ∧ dp

∣∣∣
M2N−2

,H∗
)

on the symplectic

submanifold M2N−2

(H∗) :


qx =

∂H∗

∂p
= iΛq − i

< Λq, q >

< p, q >
p

px = −∂H∗

∂p
= −iΛp + i

< Λp, p >

< p, q >
q

(5)

is completely integrable and its involutive system of conserved integrals F ∗
m is given by

F ∗
m = Fm − λmF − µmG (6)

with

λm =
(Fm, G)
(F,G)

∣∣∣
M2N−2

= i
< Λmp, p >

< p, q >
, µm =

(Fm, F )
(G, F )

∣∣∣
M2N−2

= i
< Λmq, q >

< p, q >
.

Proof. By the tangent conditions (F ∗
m, F ) = 0, (F ∗

m, G) = 0, the two Lagrange multipliers
λm and µm in (6) can be easily obtained. Through a lengthy careful calculations, we can
know the Poisson bracket (F ∗

m, F ∗
n) = 0, ∀ m,n ∈ Z+. Thus, the Hamiltonian system (5)

is completely integrable in the Liouville sense.
In (5), set

u = −i
< Λq, q >

< p, q >
, v = i

< Λp, p >

< p, q >
. (7)

Then (5) becomes{
qj,x = iλjqj + upj

pj,x = vqj − iλjpj
j = 1, 2, . . . , N (8)

which is none other than the well known Zakharov-Shabat eigenvalue problem

yx =

(
iλ u
v −iλ

)
y, i2 = −1 (9)

with y = (qj , pj)T , λ = λj .
We easily get the spectral gradient ∇λj of the spectral parameter λj with respect to

the potentials u and v

∇λj =

(
δλj/δu

δλj/δv

)
=

 p2
j

−q2
j

 . (10)
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Consider the so-called C. Neumann constraint:

(1,−1)T =
N∑

j=1

∇λj (11)

which is equivalent to < p, p >= 1, < q, q >= 1, i.e. (11) exactly yields the symplectic
submanifold M2N−2 in R2N . By making the x-derivative in Eq. (10) and using (8), we
immediately know that (11) implies (7). 2

Definition The nonlinearized system of the ZS eigenvalue problem (9) under the C. Neu-
mann constraint conditions (11) and (7) is called generalized C. Neumann system of the
ZS eigenvalue problem (9).

By this definition, we have

Proposition 2 The symplectic submanifold
(
M2N−2, dp ∧ dq

∣∣∣
M2N−2

)
defined by (4) in

the symplectic space (R2N−2, dp ∧ dq) is generated by the C. Neumann constraint (11)
of ZS eigenvalue problem (9), and the completely integrable Hamiltonian system (5) on
M2N−2 is exactly the generalized C. Neumann system of the ZS eigenvalue problem (9).

Analogously to the above ZS case, other generalized C. Neumann systems connected
with some spectral problems can be produced through introducing the concrete C. Neu-
mann constraint (its form is like to (11)). Here, other three such examples are discussed
below.

3 Other three completely integrable generalized
C. Neumann systems

3.1. It is known that the completely integrable Hamiltonian system (R2N , dp ∧ dq,H)

(H) :


qx =

∂H

∂p
= −Λq− < q, q > Λp

px = −∂H

∂q
= Λp+ < Λp, p > q

(12)

H = − < Λq, p > −1
2

< q, q >< Λp, p >

has the involutive system [2]

Fm =
1
2

< p, p >< Λmq, q > − < Λmq, p > − < q, p >< Λmp, q > −

1
2

m∑
j=0

∣∣∣∣∣ < Λjq, q > < Λjq, p >

< Λm−jp, q > < Λm−jp, p >

∣∣∣∣∣ , m = 0, 1, 2, . . .
(13)

here H = F1.
Let us constraint the Hamiltonian H defined by (12) onto the (2N − 2)-dimensional

symplectic submanifold M2N−2

M2N−2 =
{
(p, q) ∈ R2N

∣∣∣F ≡ 1
2
(< Λp, p > −1) = 0, G ≡ 1

2
(< q, q > −1) = 0

}
. (14)
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Then, like the calculation procedure in Sec. 2, we should choose

H∗ = H − λF − µG, (15)

λ =
(H,G)
(F,G)

∣∣∣
M2N−2

= −< Λq, q > + < Λp, q >

< Λp, q >
,

µ =
(H,F )
(G, F )

∣∣∣
M2N−2

= −< Λ2p, p > + < Λp, q >

< Λp, q >

(16)

as the Hamiltonian function on M2N−2. Hence, we obtain

Proposition 3 The Hamiltonian function system (H∗) on M2N−2

(H∗) :


qx = −Λq +

< Λq, q >

< Λq, p >
Λp =

∂H∗

∂p

px = Λp− < Λ2p, p >

< Λq, p >
q = −∂H∗

∂p

(17)

is integrable and its involute function system F ∗
m is determined by

F ∗
m = Fm − λmF − µmG (18)

with the Lagrange multipliers

λm =
(Fm, G)
(F,G)

∣∣∣
M2N−2

= −< Λmq, q > + < Λmq, p >

< Λp, q >
,

µm =
(Fm, F )
(G, F )

∣∣∣
M2N−2

= −< Λm+1p, p > + < Λmq, p >

< Λp, q >
.

(19)

In (17), order

u =
< Λq, q >

< Λq, p >
, v = −< Λ2p, p >

< Λq, p >
. (20)

Then, (17) is exactly produced by the eigenvalue problem [13]

yx =

(
−λ λu

v λ

)
y (21)

with y = (qj , pj)T , λ = λj , and (20) is deduced none other than the C. Neumann constraint

(1,−1)T =
N∑

j=1

∇λj , ∇λj =

(
δλj/δu

δλj/δv

)
=

 λjp
2
j

−q2
j

 (22)

through the x-derivative of (22).

Proposition 4 The symplectic submanifold
(
M2N−2, dp ∧ dq

∣∣∣
M2N−2

)
defined by (14) in

the symplectic space (R2N−2, dp∧dq) is generated by the C. Neumann constraint (22), and
the completely integrable Hamiltonian system (17) is actually the generalized C. Neumann
system of the eigenvalue problem (21).
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3.2. The integrable Hamiltonian system (C2N , dp ∧ dq,H)

(H) :


qx =

∂H

∂p

px = −∂H

∂q

H = −1
2

< Λq, q > +
1
2

< p, q >2 +
1
2

< p, p > (23)

possesses the involutive system of conserved integrals Fm (F0 = H)

Fm = −1
2

< Λm+1q, q > +
1
2

< Λmp, p > +
1
2

< q, q >< Λmp, p > −

1
2

∑
i+j=m

∣∣∣∣∣ < Λiq, q > < Λiq, p >

< Λjp, q > < Λjp, p >

∣∣∣∣∣ , m = 0, 1, 2, . . .
(24)

Firstly, let us constrain the Hamiltonian H onto the symplectic submanifold M2N−4

M2N−4 =
{
(p, q) ∈ C2N

∣∣∣F 1 ≡ 1
2
(< Λ−1p, p > −1) = 0, G1 ≡< Λ−1p, q >= 0,

F 2 ≡ 1
2
(< Λ−1p, p > + < q, q >) = 0, G2 ≡ (< Λ−2p, p > − < Λ−1q, q >) = 0

}
.

(25)

Then the Hamiltonian H∗ on M2n−4 should be set as

H∗ = H − λ1F 1 − µ1G1 − λ2F 2 − µ2G2, (26)

where the Lagrange multipliers λ1, λ2, µ1, µ2 determined by the tangent conditions
(H∗, F 1) = 0, (H∗, F 2) = 0, (H∗, G1) = 0, (H∗, G2) = 0 are

λ1 = µ1 = µ2 = 0,

λ2 =
(H,G2)
(F 2, G2)

∣∣∣
M2N−4

=
< q, p > (< Λ−1q, q > + < Λ−2p, p >)

2 < Λ−2q, p >
.

(27)

Proposition 5 The Hamiltonian system (H∗) on M2N−4 defined by (25)

(H∗) :


qx =

∂H∗

∂p
= p+ < p, q > q − < p, q > (< Λ−1q, q > + < Λ−2p, p >)

2 < Λ−2q, p >
Λ−1p

px = −∂H∗

∂p
= Λq− < p, q > p +

< p, q > (< Λ−1q, q > + < Λ−2p, p >)
2 < Λ−2q, p >

q

(28)

is completely integrable, and its involutive system F ∗
m is

F ∗
m = Fm − λ1

mF 1 − µ1
mG1 − λ2

mF 2 − µ2
mG2 (29)

with

λ1
m = µ1

m = µ2
m = 0,

λ2
m =

(Fm, G2)
(F 2, G2)

∣∣∣
M2N−4

=
< Λmp, q > (< Λ−1q, q > + < Λ−2p, p >)

2 < Λ−2p, q >
.

(30)
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In (28), set

v =< p, q >, u = −< p, q > (< Λ−1q, q > + < Λ−2p, p >)
2 < Λ−2p, q >

. (31)

Then the Hamiltonian system (H∗) becomes{
qx = p + vq + uΛ−1p

px = Λq − uq − vp
(32)

which is exactly one eigenvalue problem studied by Hu [14]

yx =

(
v 1 + λ−1u

λ− u −v

)
y (33)

with y = (qj , pj)T , λ = λj .

Proposition 6 The symplectic submanifold
(
M2N−4, dp ∧ dq

∣∣∣
M2N−4

)
defined by (25) in

the symplectic space (R2N−2, dp ∧ dq) is generated by the C. Neumann constraint of the
eigenvalue problem (33), and the completely integrable Hamiltonian system (28) is actually
the generalized C. Neumann system of the eigenvalue problem (33).

Secondly, let us constrain the Hamiltonian H onto the symplectic submanifold M2N−4

M2N−4 =
{
(p, q) ∈ C2N

∣∣∣F 1 ≡ 1
2
(< Λ−1p, p > −1) = 0, G1 ≡< Λ−1p, q >= 0,

F 2 ≡ 1
2
(< Λ−1p, p > − < q, q > −2) = 0, G2 ≡ 1

2
(< Λ−2p, p > + < Λ−1q, q >) = 0

}
.

(34)

Proposition 7 The Hamiltonian system (H∗) on M2N−4 defined by (34)

(H∗) :


qx =

∂H∗

∂p
= p+ < p, q > q +

< p, q > (< Λ−2p, p > − < Λ−1q, q >)
2 < Λ−2p, q >

Λ−1p

px = −∂H∗

∂p
= Λq− < p, q > p +

< p, q > (< Λ−2q, q > − < Λ−1q, q >)
2 < Λ−2p, q >

q

(35)

with

H∗ = H − λ2F 2, λ2 =
(H,G2)
(F 2, G2)

∣∣∣
M2N−4

= −< p, q > (< Λ−2p, p > − < Λ−1q, q >)
2 < Λ−2p, q >

,(36)

is completely integrable, and has the involute system F ∗
m:

F ∗
m = Fm − λ2

mF 2, λ2
m =

(Fm, G2)
(F 2, G2)

∣∣∣
M2N−4

= −< Λmp, q > (< Λ−2p, p > − < Λ−1q, q >)
2 < Λ−2p, q >

.

In (35), set

u =< p, q >, v = −< p, q > (< Λ−2p, p > − < Λ−1q, q >)
2 < Λ−2p, q >

(37)

then (35) is exactly changed as another eigenvalue problem studied by Hu [14]

yx =

(
u 1 + λ−1v

λ + v −u

)
y (38)

with y = (qj , pj)T , λ = λj .
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Proposition 8 The symplectic submanifold
(
M2N−4, dp ∧ dq

∣∣∣
M2N−4

)
defined by (34) in

the symplectic space (R2N−2, dp ∧ dq) is generated by the C. Neumann constraint of the
eigenvalue problem (38), and the completely integrable Hamiltonian system (35) is actually
the generalized C. Neumann system of the eigenvalue problem (38).

3.3. It isn’t difficult to prove that the Hamiltonian system (R2N , dp ∧ dq,H)

(H) :


qx =

∂H

∂p
= Λp− < p, q > p

px = −∂H

∂q
= Λq − 2 < q, q > q+ < p, q > p

(39)

H =
1
2
(< Λp, p > − < Λq, q >) +

1
2

< q, q >2 −1
2

< p, q >2

is completely integrable in the Liouville sense and has the involutive system of conserved
Fm:

Fm =
1
2
(< Λm+1p, p > − < Λm+1q, q >)− 1

2
< p, p >< Λmq, q > +

1
2

< q, q >< Λmq, q > +
1
2

∑
i+j=m

∣∣∣∣∣ < Λiq, q > < Λiq, p >

< Λjp, q > < Λjp, p >

∣∣∣∣∣ , m = 0, 1, 2, . . .
(40)

Note F0 = H.
Consider the restriction of the integrable Hamiltonian system (39) on the following

symplectic submanifold M2N−2

M2N−2 =
{
(p, q) ∈ R2N

∣∣∣F ≡ 1
2
(< Λ−1q, q > −1) = 0, G ≡< Λ−1p, q >= 0

}
. (41)

On M2N−2, the Hamiltonian H∗ should be chosen as

H∗ = H − λF − µG, (42)

µ =
(H,F )
(G, F )

∣∣∣
M2N−2

= 0, λ =
(H,G)
(F,G)

∣∣∣
M2N−2

=
< q, q > − < p, p >

< Λ−2q, q >
.

Proposition 9 The Hamiltonian system (H∗) on M2N−2 defined by (41)

(H∗) :


qx =

∂H∗

∂p
= Λp− < p, q > q

px = −∂H∗

∂p
= Λq − 2 < q, q > q+ < p, q > p +

< q, q > − < p, p >)
2 < Λ−2q, q >

Λ−1q

(43)

is integrable and possesses the involutive system F ∗
m

F ∗
m = Fm − λmF (44)

with

λm =
(Fm, G)
(F,G)

∣∣∣
M2N−2

=
< Λm−1q, q > (< q, q > − < p, p >)

< Λ−2q, q >
. (45)
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In (43), set
P =

1
2
(q + p)

Q =
1
2
ε(q − p), ε = ±1

(46)

and 
u = −ε < p, q >

v =
1
2
ε
< q, q > − < p, p >

< Λ−2q, q >

w = −ε < q, q >

(47)

then (43) is equivalent to Qj,x = −(λj + εw + ελ−1
j v)Qj + (u− w − λ−1

j v)Pj

Pj,x = (u + w + λ−1
j v)Qj + (λj + εw + ελ−1

j v)Pj

j = 1, 2, . . . , N (48)

which is exactly a new eigenvalue problem

yx =

(
−λ− εw − ελ−1v u− w − λ−1v

u + w + λ−1v λ + εw + ελ−1v

)
y ε = ±1 (49)

with y = (Qj , Pj)T , λ = λj .
It is easy to get the spectral gradient ∇λj with regard to the potential u, v and w of

(49)

∇λj =


δλj/δu

δλj/δv

δλj/δw

 =


−Q2

j + P 2
j

−λ−1
j (Pj + εQj)2

−(Pj + εQj)2

 , j = 1, 2, . . . , N. (50)

Introduce the C. Neumann constraint condition
−u

−ε

w

 =
N∑

j=1

ε · ∇λj (51)

which directly yields the first and the third equalities of (47) and

< Λ−1(P + εQ), P + εQ >= 1, i.e. < Λ−1q, q >= 1. (52)

After the x-derivative is made in the relation < Λ−1p, q >= 0, i.e., < Λ−1(P − εQ), P +
εQ >= 0, and (48), (51) are used , the second equality of (47) is promptly obtained. Thus,
(47) is actually produced by the C. Neumann constraint (51) and < Λ−1q, p >= 0. So is
the symplectic submanifold M2N−2 defined by (41).

Proposition 10 The symplectic submanifold
(
M2N−2, dp ∧ dq

∣∣∣
M2N−2

)
defined by (41) in

the symplectic space (R2N−2, dp∧dq) is generated by the C. Neumann constraint (51), and
the completely integrable Hamiltonian system (43) is actually the generalized C. Neumann
system of the new eigenvalue problem (49).
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Conclusion. Through some examples lined above, it appears that the scope of completely
integrable systems in the Liouville sense is further enlarged. We can also apply this
approach to other completely integrable Hamiltonian systems, and produce other new
generalized C. Neumann integrable systems.
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