Two-Point Boundary Optimization Problem for Bilinear Control Systems

Alla V. VINOGRADSKAYA
Kyïv University, Department of Cybernetics

Abstract

This paper presents a new approach to the optimization problem for the bilinear system $$
\begin{equation*} \dot{x}=\{x, \omega\} \tag{1} \end{equation*}
$$ based on the well-known method of continuous parametric group reconstruction using of its structure constants defined by the Brockett equation $$
\begin{equation*} \dot{z}=\{z, \omega\} \tag{2} \end{equation*}
$$

Here x is the system state vector, $\{\cdot, \cdot\}$ are the Lie brackets, $z=\{x, y\}, y$ is the vector of cojoint variables, $\omega=A^{-1} z$ is the control vector, A is the inertion matrix.

The quadratic control functional has to reach an extremum at the optimal solution of the equation (2) and the boundary optimization problem is to find such z_{0} that solution (2) makes evolution from the state $x\left(t_{0}\right)=x_{0}$ up to the final state $x\left(t_{1}\right)=x_{1}$ during the time delay $T=t_{1}-t_{0}$. Therefore it is necessary to define a transformation group of the state space which is parametrized by components of the vector and then to solve the Cauchy problem for an arbitrary smooth curve joining $x\left(t_{0}\right)$ with $x\left(t_{0}\right)$.

Key words. Bilinear system, Lie group, optimization, boundary problem, structure constants.

1 Introduction

Optimization problem with a quadratic quality criterion for smooth a dynamic system

$$
\begin{equation*}
\dot{x}=f(x, u), \quad x\left(t_{0}\right)=x_{0}, \quad x\left(t_{1}\right)=x_{1} \tag{3}
\end{equation*}
$$

in many important cases $[1,2]$ can be reduced to the bilinear form as follows: to find such a control $u: R \rightarrow R^{m}, u=u(t)$ for the system

$$
\begin{equation*}
\dot{x}=\left(\sum_{\mu=1}^{m} H_{\mu} u_{\mu}\right) x \tag{4}
\end{equation*}
$$

where H_{μ} are matrices generating the Lie group G defined by $f(x, u)$, that the state vector x varies from $x_{0}=x\left(t_{0}\right)$ to $x_{1}=x\left(t_{1}\right)$ and a loss functional riches a minimum. Brockett (1973) in [2] proposed instead of the equation for adjoint variable y another one for the commutator $z=\{x, y\}$ as follows

$$
\begin{equation*}
\dot{z}=\left\{z, A^{-1} z\right\} \tag{5}
\end{equation*}
$$

where a matrix A can be expressed in terms of H_{μ}. Eliminating u_{μ} on the basis on the Pontryagin maximum principle and expressing it via z yield the next two-point boundary problem. To find such $z=z(t)$ that the system

$$
\begin{equation*}
\dot{x}=\left\{x, A^{-1} z\right\} \tag{6}
\end{equation*}
$$

in the force of (4) brings the state vector x from $x\left(t_{0}\right)=x_{0}$ to $x\left(t_{1}\right)=x_{1}$ during the time delay $T=t_{1}-t_{0}$ which depends on coefficients of the quadratic loss functional.

An approach explained below gives global optimum in the case of a compact G, otherwise a final compact approximation is necessary. Note that an usual linearization procedure applied to (3) gives only local optimum in all cases.

2 Main results

The optimization of bilinear system (6) is based on the well-known restoration method of continuous parametric group involving its structure constants defined from the Brockett equation (5).

Accordingly, we are to define a transformation group of the state space which is parametrized by the components of vector z_{0}. In the basis matched with the structure of the Lie algebra, we obtain that the equation (5) has the following form

$$
\begin{equation*}
\dot{z}_{\alpha}=\sum_{\beta, \gamma=1}^{n} \frac{C_{\alpha}^{\beta \gamma}}{I_{\gamma}} z_{\beta} z_{\gamma}, \tag{7}
\end{equation*}
$$

where $C_{\alpha}^{\beta \gamma}$ are structural constants, I_{γ} are eigenvalues of the matrix A.
The linear system, together with (7)

$$
\begin{equation*}
\dot{x_{\alpha}}=\sum_{\beta=1}^{n} \sum_{\gamma=1}^{n} \frac{C_{\alpha}^{\beta \gamma}}{I_{\gamma}} x_{\beta} z_{\gamma}, \tag{8}
\end{equation*}
$$

is considered.
Under given $z_{j}^{0}=z_{j}\left(t_{0}\right), \quad \tilde{x}_{j}^{0}=x_{j}\left(t_{0}\right)$ one can represent a partial solution of a system (8) in the form

$$
\begin{equation*}
x_{\alpha}(t)=\sum_{\beta=1}^{n} S_{\alpha \beta}\left(t, t_{0} ; z_{\gamma}^{0}\right) x_{\beta}^{0} ; \tag{9}
\end{equation*}
$$

where $S_{\alpha \beta}\left(t, t_{0} ; z_{\gamma}^{0}\right)$ are elements of a fundamental matrix. The transformation (9) preserves a scalar product being a space rotation. If $\tilde{x}_{\alpha}^{0}=z_{\alpha}^{0}$, the solution of a system (7) has the similar form

$$
\begin{equation*}
z_{\alpha}(t)=\sum_{\beta=1}^{n} S_{\alpha \beta}\left(t, t_{0} ; z_{\gamma}^{0}\right) z_{\beta}^{0} . \tag{10}
\end{equation*}
$$

As fixed $z_{\gamma}^{0}(\gamma=\overline{1, n})$, equation (7) defines variable coefficients of equation (8) and the fundamental matrix. Changing t, we obtain a one-parameter set of rotation of a space over a fixed point, the origin of coordinates. Fundamental matrices satisfy the group relations

$$
\begin{equation*}
\sum_{\beta_{1}=1}^{n} S_{\alpha \beta_{1}}\left(t_{2}, t_{1} ; z_{\gamma}^{0}\right) S_{\beta_{1} \beta}\left(t_{1}, t_{0} ; z_{\gamma}^{0}\right)=S_{\alpha \beta}\left(t_{2}, t_{0} ; z_{\gamma}^{0}\right), \quad S_{\alpha \beta}\left(t, t_{0} ; z_{\gamma}^{0}\right)=\delta_{\alpha \beta} \tag{11}
\end{equation*}
$$

and create a one-parameter Lie group according to time t. We note that system (7), (8) is invariant under the change of variables

$$
\begin{equation*}
t=\tau T, \quad z_{\alpha}=\frac{\zeta_{\alpha}}{T} \tag{12}
\end{equation*}
$$

and, consequently, its fundamental matrix

$$
S_{\alpha \beta}\left(\tau T, \tau_{0} T ; \frac{\zeta_{\gamma}^{0}}{T}\right)=S_{\alpha \beta}\left(t, t_{0} ; z_{\gamma}^{0}\right)
$$

does not change.
If we take $\delta_{\beta \beta_{1}}$ instead of x_{β}^{0}, then after substitution (9) and (10) for (8) we obtain

$$
\begin{equation*}
\frac{\partial}{\partial t} S_{\alpha \beta_{1}}\left(t, t_{0} ; z_{\gamma_{2}}^{0}\right)=\sum_{\beta=1}^{n} \sum_{\gamma=1}^{n} \frac{C_{\alpha}^{\beta \gamma}}{I_{\gamma}} S_{\beta \beta_{1}}\left(t, t_{0} ; z_{\gamma_{2}}^{0}\right) \sum_{\gamma_{1}=1}^{n} S_{\gamma \gamma_{1}}\left(t, t_{0} ; z_{\gamma_{2}^{0}}\right) z_{\gamma_{1}}^{0} \tag{13}
\end{equation*}
$$

The variety of fundamental matrices $\left\|S_{\alpha \beta}\left(t, t_{0} ; z_{\gamma}^{0}\right)\right\|$ under all possible $z_{\gamma}^{0} \in R^{n}$ and fixed $t=t_{1}=t_{0}+T$ forms a subgroup of the group $S O(n)$ i.e., the group of rotation of n-dimensional space.

By virtue of the change (13), it is sufficient to prove that the subgroup of $S O(n)$ is formed by matrices $S_{\alpha \beta}\left(t, t_{0} ; z_{\gamma}^{0}\right)$ under every $t \in R, \quad z_{\gamma}^{0} \in S^{n}$, where S^{n} is a unit sphere in R^{n} :

$$
\sum_{\gamma=1}^{n}\left(z_{\gamma}^{0}\right)^{2}=1
$$

Let z_{γ}^{0} be directive cosines of a unit vector in R^{n}. Fixing $\vec{\zeta}$ and changing t, we get the one-parameter set of matrices

$$
\begin{equation*}
\left\{\left\|S_{\alpha \beta}\left(t, t_{0} ; z_{\gamma}^{0}\right)\right\|\right\} \tag{14}
\end{equation*}
$$

Since $\sum_{\beta_{1}=1}^{n} S_{\alpha \beta_{1}}\left(t_{0}, t_{1} ; z_{\gamma}^{0}\right) S_{\beta_{1} \beta}\left(t_{1}, t_{0} ; z_{\gamma}^{0}\right)=\delta_{\alpha \beta}$, then the variety of matrices (14) forms a group G isomorphic to the group $S O(n)$. Choose $\overrightarrow{\zeta_{\mu}}$ as a unit vector with components $\zeta_{\mu \gamma_{1}}=\delta_{\mu \gamma_{1}}\left(\mu, \gamma_{1}=\overline{1, n}\right)$.

Then by (13) the infinitesimal matrices of corresponding one-parameter groups will have the following elements

$$
\begin{equation*}
I_{\alpha \beta_{1}}^{\mu}=\lim _{t \rightarrow t_{0}} \frac{\partial}{\partial t} S_{\alpha \beta_{1}}\left(t, t_{0} ; \overrightarrow{\zeta_{\mu}}\right)=\sum_{\beta=1}^{n} \sum_{\gamma=1}^{n} \frac{C_{\alpha}^{\beta \gamma}}{I_{\gamma}} \delta_{\beta \beta_{1}} \sum_{\gamma_{1}=1}^{n} \delta_{\gamma \gamma_{1}} \delta_{\mu \gamma_{1}}=\frac{C_{\alpha}^{\beta_{1} \mu}}{I_{\mu}} \tag{15}
\end{equation*}
$$

Compose a commutator and determine the structural constants of the group G

$$
\begin{aligned}
& \sum_{\delta=1}^{n}\left(I_{\alpha \beta}^{\gamma_{1}} I_{\delta \beta}^{\gamma_{2}}-I_{\alpha \delta}^{\gamma_{2}} I_{\delta \beta}^{\gamma_{1}}\right)=\frac{1}{I_{\gamma_{1}} I_{\gamma_{2}}} \sum_{\delta=1}^{n}\left(C_{\gamma_{1}}^{\alpha \delta} C_{\gamma_{2}}^{\delta \beta}-C_{\gamma_{2}}^{\alpha \delta} C_{\gamma_{1}}^{\delta \beta}\right)=\frac{1}{I_{\gamma_{1}} I_{\gamma_{2}}} \sum_{\delta=1}^{n}\left(C_{\gamma_{1}}^{\alpha \delta} C_{\delta}^{\beta \gamma_{2}}-\right. \\
& \left.\quad C_{\gamma_{1}}^{\beta \alpha} C_{\delta}^{\gamma_{2} \alpha}\right)=-\frac{1}{I_{\gamma_{1}} I_{\gamma_{2}}} \sum_{\delta=1}^{n} C_{\gamma_{1}}^{\gamma_{2} \delta} C_{\delta}^{\alpha \beta}=\sum_{\gamma_{3}=1}^{n} \frac{I_{\gamma_{3}}}{I_{\gamma_{1}} I_{\gamma_{2}}} C_{\gamma_{3}}^{\alpha \beta} \times \frac{C_{3}^{\gamma_{1} \gamma_{2}}}{I_{3}}=\sum_{\gamma_{3}=1}^{n} A_{\gamma_{3}}^{\gamma_{1} \gamma_{2}} I_{\alpha \beta}^{\gamma_{3}}, \\
& A_{\gamma_{3}}^{\gamma_{1} \gamma_{2}}=\frac{I_{\gamma_{3}}}{I_{\gamma_{1}} I_{\gamma_{2}}} C_{\gamma_{3}}^{\gamma_{1} \gamma_{2}} .
\end{aligned}
$$

For them Jacobi's identity is fulfilled

$$
\begin{align*}
\sum_{s=1}^{n}\left(A_{p}^{i s} A_{s}^{j k}+A_{p}^{j s} A_{s}^{k i}+A_{p}^{k s} A_{s}^{i j}\right) & =\sum_{s=1}^{n} \frac{I_{p}}{I_{s} I_{i}} C_{p}^{i s} C_{s}^{j k} \frac{I_{s}}{I_{j} I_{k}}+\frac{I_{p}}{I_{j} I_{s}} C_{p}^{j s} C_{s}^{k i} \frac{I_{s}}{I_{k} I_{i}}+ \\
\frac{I_{p}}{I_{k} I_{s}} C_{p}^{k s} C_{s}^{i j} \frac{I_{s}}{I_{j} I_{i}}= & \frac{I_{p}}{I_{i} I_{j} I_{k}} \sum_{s=1}^{n}\left(C_{p}^{i s} C_{s}^{j k}+C_{p}^{j s} C_{s}^{k i}+C_{p}^{k s} C_{s}^{i j}\right)=0 . \tag{16}
\end{align*}
$$

These infinitesimal operators form a dimensional Lie algebra. Its corresponding group is the n-parametrized Lie group G with $z_{\gamma_{0}}^{0}(\gamma=\overline{1, n})$ as parameters.

A matrix $V_{\alpha \beta}\left(z_{\gamma}^{0}\right)$ of the adjoint representation of a group formed by fundamental matrices $\left\|S_{\alpha \beta}\left(t_{0}+T, t_{0} ; z_{\gamma}^{0}\right)\right\|$ is determined according to [3] by the solution $W_{\alpha \beta}$ of the following linear system of differential equations with constant coefficients

$$
\begin{equation*}
d W_{\alpha \beta} / d t=\delta_{\alpha \beta}+\sum_{i=1}^{n} \sum_{j=1}^{n} z_{i}^{0} A_{\alpha}^{i j} W_{j \beta} \tag{17}
\end{equation*}
$$

under the initial condition $W_{\alpha \beta}\left(t, z_{\gamma}^{0}\right)=0,(t=0)(\alpha, \beta, \gamma=\overline{1, n})$, where $V_{\beta}^{\alpha}\left(z_{j}^{0}\right)=$ $W_{\alpha \beta}\left(T, z_{\gamma}^{0}\right)$. For restoration of a n-parameter group by means of structural constants, it is necessary to solve the Cauchy problem for a system (17).

According to [4] for the solution of an initial boundary-value problem, we need to solve also the second Cauchy problem for a system of linear equations in partial derivatives

$$
\begin{equation*}
\partial r^{\alpha}(\vec{\zeta}) / \partial \zeta^{\beta}=\sum_{\beta=1}^{n} \sum_{\mu=1}^{n} V_{\gamma}^{\mu}(\vec{\zeta}) I_{\beta}^{\alpha}(\mu) r^{\beta}(\vec{\zeta}),\left.\quad \vec{r}(\vec{\zeta})\right|_{\zeta=0}=x_{0}, \quad \vec{\zeta}=\vec{\zeta}(S) . \tag{18}
\end{equation*}
$$

For this, the trajectory connecting $\overrightarrow{x_{0}}$ and $\overrightarrow{x_{1}}$ in R^{n} is given and a Riemann connexity is introduced

$$
\Gamma_{\gamma \beta}^{\alpha}(\vec{\zeta})=-\sum_{\mu=1}^{n} I_{\beta}^{\alpha}(\mu) V_{\gamma}^{\mu}(\vec{\zeta}) .
$$

Then the Cauchy problem for equation (18) can be reduced to the definition $\vec{\zeta}(s)$, $s \in[0,1]$, from the equation

$$
\begin{equation*}
\frac{d r^{\alpha}(S)}{d S}-\sum_{\beta=1}^{n} \sum_{\gamma=1}^{n} \Gamma_{\beta \gamma}^{\alpha}(\vec{\zeta}) r^{\gamma}(S) \frac{d \zeta^{\beta}}{d S}=0 ; \quad \vec{\zeta}(0)=0 . \tag{19}
\end{equation*}
$$

The solution of a boundary-value optimization problem is obtained by integrating a system (6) with the initial condition $z(\overrightarrow{0})=\zeta \overrightarrow{1})$. The approach proposed uses no iterative procedures and is applicable for solving the optimal control problems in a real time scale.

3 Conclusion

The analysis fulfilled above of the system with a multiplicative control demonstrated the following possibilities.

1. Construction of the Lie group representation basis with a minimum dimension.
2. Reduction of the two-point boundary optimization problem to Cauchy one for an auxiliary system which has to be integrated along a smooth fixed trajectory joining given points in the state space of the system.
3. Practically such a method is applicable for a real-time on-board control.

References

[1] Wong Wei, Brockhaus R., Xiao Shunda, Nonlinear multi-point modelling and parameter estimation of Do 28 research aircraft, 11-th IFAC World congress, Tallin, Estonia, USSR, August 13-17, V.5, 1990.
[2] Brockett Roger W., Lie algebras and Lie groups in control theory, in: Mathematical methods in system theory, Moscow, Mir, 1979.
[3] Pontryagin L.S., Continuous Groups, Moscow, Nauka, 1984 (in Russian).
[4] Smirnov V.I., Course of High Mathematics, Moscow, ITTL, 1951, V.3, part 1, 340 (in Russian).

