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Abstract

This paper presents a new approach to the optimization problem for the bilinear
system

ẋ = {x, ω} (1)

based on the well-known method of continuous parametric group reconstruction using
of its structure constants defined by the Brockett equation

ż = {z, ω}. (2)

Here x is the system state vector, {·, ·} are the Lie brackets, z = {x, y}, y is the vector
of cojoint variables, ω = A−1z is the control vector, A is the inertion matrix.

The quadratic control functional has to reach an extremum at the optimal solution
of the equation (2) and the boundary optimization problem is to find such z0 that
solution (2) makes evolution from the state x(t0) = x0 up to the final state x(t1) = x1

during the time delay T = t1− t0. Therefore it is necessary to define a transformation
group of the state space which is parametrized by components of the vector and then
to solve the Cauchy problem for an arbitrary smooth curve joining x(t0) with x(t0).

Key words. Bilinear system, Lie group, optimization, boundary problem, struc-
ture constants.

1 Introduction

Optimization problem with a quadratic quality criterion for smooth a dynamic system

ẋ = f(x, u), x(t0) = x0, x(t1) = x1, (3)

in many important cases [1, 2] can be reduced to the bilinear form as follows: to find such
a control u : R → Rm, u = u(t) for the system

ẋ =

 m∑
µ=1

Hµuµ

x, (4)

where Hµ are matrices generating the Lie group G defined by f(x, u), that the state vector
x varies from x0 = x(t0) to x1 = x(t1) and a loss functional riches a minimum. Brockett
(1973) in [2] proposed instead of the equation for adjoint variable y another one for the
commutator z = {x, y} as follows
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ż = {z,A−1z}, (5)

where a matrix A can be expressed in terms of Hµ. Eliminating uµ on the basis on the
Pontryagin maximum principle and expressing it via z yield the next two-point boundary
problem. To find such z = z(t) that the system

ẋ = {x,A−1z} (6)

in the force of (4) brings the state vector x from x(t0) = x0 to x(t1) = x1 during the time
delay T = t1 − t0 which depends on coefficients of the quadratic loss functional.

An approach explained below gives global optimum in the case of a compact G, oth-
erwise a final compact approximation is necessary. Note that an usual linearization pro-
cedure applied to (3) gives only local optimum in all cases.

2 Main results

The optimization of bilinear system (6) is based on the well-known restoration method of
continuous parametric group involving its structure constants defined from the Brockett
equation (5).

Accordingly, we are to define a transformation group of the state space which is
parametrized by the components of vector z0. In the basis matched with the structure
of the Lie algebra, we obtain that the equation (5) has the following form

żα =
n∑

β,γ=1

Cβγ
α

Iγ
zβzγ , (7)

where Cβγ
α are structural constants, Iγ are eigenvalues of the matrix A.

The linear system, together with (7)

ẋα =
n∑

β=1

n∑
γ=1

Cβγ
α

Iγ
xβzγ , (8)

is considered.
Under given z0

j = zj(t0), x̃0
j = xj(t0) one can represent a partial solution of a system

(8) in the form

xα(t) =
n∑

β=1

Sαβ(t, t0; z0
γ)x0

β; (9)

where Sαβ(t, t0; z0
γ) are elements of a fundamental matrix. The transformation (9) pre-

serves a scalar product being a space rotation. If x̃0
α = z0

α, the solution of a system (7)
has the similar form

zα(t) =
n∑

β=1

Sαβ(t, t0; z0
γ)z0

β . (10)
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As fixed z0
γ (γ = 1, n), equation (7) defines variable coefficients of equation (8) and the

fundamental matrix. Changing t, we obtain a one-parameter set of rotation of a space over
a fixed point, the origin of coordinates. Fundamental matrices satisfy the group relations

n∑
β1=1

Sαβ1(t2, t1; z
0
γ)Sβ1β(t1, t0; z0

γ) = Sαβ(t2, t0; z0
γ), Sαβ(t, t0; z0

γ) = δαβ (11)

and create a one-parameter Lie group according to time t. We note that system (7), (8)
is invariant under the change of variables

t = τT, zα =
ζα

T
(12)

and, consequently, its fundamental matrix

Sαβ

(
τT, τ0T ;

ζ0
γ

T

)
= Sαβ(t, t0; z0

γ)

does not change.
If we take δββ1 instead of x0

β , then after substitution (9) and (10) for (8) we obtain

∂

∂t
Sαβ1(t, t0; z

0
γ2

) =
n∑

β=1

n∑
γ=1

Cβγ
α

Iγ
Sββ1(t, t0; z

0
γ2

)
n∑

γ1=1

Sγγ1(t, t0; zγ0
2
)z0

γ1
. (13)

The variety of fundamental matrices ‖ Sαβ(t, t0; z0
γ) ‖ under all possible z0

γ ∈ Rn and
fixed t = t1 = t0 + T forms a subgroup of the group SO(n) i.e., the group of rotation of
n-dimensional space.

By virtue of the change (13), it is sufficient to prove that the subgroup of SO(n) is
formed by matrices Sαβ(t, t0; z0

γ) under every t ∈ R, z0
γ ∈ Sn, where Sn is a unit sphere

in Rn:
n∑

γ=1

(z0
γ)2 = 1.

Let z0
γ be directive cosines of a unit vector in Rn. Fixing ~ζ and changing t, we get the

one-parameter set of matrices

{‖ Sαβ(t, t0; z0
γ) ‖}. (14)

Since
n∑

β1=1
Sαβ1(t0, t1; z

0
γ)Sβ1β(t1, t0; z0

γ) = δαβ , then the variety of matrices (14) forms a

group G isomorphic to the group SO(n). Choose ~ζµ as a unit vector with components
ζµγ1 = δµγ1 (µ, γ1 = 1, n).

Then by (13) the infinitesimal matrices of corresponding one-parameter groups will
have the following elements

Iµ
αβ1

= lim
t→t0

∂

∂t
Sαβ1(t, t0; ~ζµ) =

n∑
β=1

n∑
γ=1

Cβγ
α

Iγ
δββ1

n∑
γ1=1

δγγ1δµγ1 =
Cβ1µ

α

Iµ
. (15)
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Compose a commutator and determine the structural constants of the group G

n∑
δ=1

(Iγ1

αβIγ2

δβ − Iγ2

αδI
γ1

δβ) =
1

Iγ1Iγ2

n∑
δ=1

(Cαδ
γ1

Cδβ
γ2

− Cαδ
γ2

Cδβ
γ1

) =
1

Iγ1Iγ2

n∑
δ=1

(Cαδ
γ1

Cβγ2

δ −

Cβα
γ1

Cγ2α
δ ) = − 1

Iγ1Iγ2

n∑
δ=1

Cγ2δ
γ1

Cαβ
δ =

n∑
γ3=1

Iγ3

Iγ1Iγ2

Cαβ
γ3

×
Cγ1γ2

γ3

I3
=

n∑
γ3=1

Aγ1γ2
γ3

Iγ3

αβ ,

Aγ1γ2
γ3

=
Iγ3

Iγ1Iγ2

Cγ1γ2
γ3

.

For them Jacobi’s identity is fulfilled
n∑

s=1

(Ais
p Ajk

s + Ajs
p Aki

s + Aks
p Aij

s ) =
n∑

s=1

Ip

IsIi
Cis

p Cjk
s

Is

IjIk
+

Ip

IjIs
Cjs

p Cki
s

Is

IkIi
+

Ip

IkIs
Cks

p Cij
s

Is

IjIi
=

Ip

IiIjIk

n∑
s=1

(Cis
p Cjk

s + Cjs
p Cki

s + Cks
p Cij

s ) = 0. (16)

These infinitesimal operators form a dimensional Lie algebra. Its corresponding group
is the n-parametrized Lie group G with z0

γ0
(γ = 1, n) as parameters.

A matrix Vαβ(z0
γ) of the adjoint representation of a group formed by fundamental

matrices ‖ Sαβ(t0 + T, t0; z0
γ) ‖ is determined according to [3] by the solution Wαβ of the

following linear system of differential equations with constant coefficients

dWαβ/dt = δαβ +
n∑

i=1

n∑
j=1

z0
i Aij

α Wjβ (17)

under the initial condition Wαβ(t, z0
γ) = 0, (t = 0) (α, β, γ = 1, n), where V α

β (z0
j ) =

Wαβ(T, z0
γ). For restoration of a n-parameter group by means of structural constants, it is

necessary to solve the Cauchy problem for a system (17).
According to [4] for the solution of an initial boundary-value problem, we need to solve

also the second Cauchy problem for a system of linear equations in partial derivatives

∂rα(~ζ)/∂ζβ =
n∑

β=1

n∑
µ=1

V µ
γ (~ζ)Iα

β (µ)rβ(~ζ), ~r(~ζ)|ζ=0 = x0, ~ζ = ~ζ(S). (18)

For this, the trajectory connecting ~x0 and ~x1 in Rn is given and a Riemann connexity is
introduced

Γα
γβ(~ζ) = −

n∑
µ=1

Iα
β (µ)V µ

γ (~ζ).

Then the Cauchy problem for equation (18) can be reduced to the definition ~ζ(s),
s ∈ [0, 1], from the equation

drα(S)
dS

−
n∑

β=1

n∑
γ=1

Γα
βγ(~ζ)rγ(S)

dζβ

dS
= 0; ~ζ(0) = 0. (19)

The solution of a boundary-value optimization problem is obtained by integrating a system
(6) with the initial condition ~z(0) = ~ζ(1). The approach proposed uses no iterative
procedures and is applicable for solving the optimal control problems in a real time scale.
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3 Conclusion

The analysis fulfilled above of the system with a multiplicative control demonstrated the
following possibilities.

1. Construction of the Lie group representation basis with a minimum dimension.

2. Reduction of the two-point boundary optimization problem to Cauchy one for an
auxiliary system which has to be integrated along a smooth fixed trajectory joining
given points in the state space of the system.

3. Practically such a method is applicable for a real-time on-board control.
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