On Classes of Lie Solutions of MHD Equations, Expressed via the General Solution of the Heat Equation

Victor POPOVYCH

Institute of Mathematics of the National Ukrainian Academy of Sciences, 3 Tereshchenkivs'ka Street, Kyïv 4, Ukraïna

Abstract

Large classes of Lie solutions of the MHD equations describing the flows of a viscous homogeneous incompressible fluid of finite electrical conductivity are constructed. These classes contain a number of arbitrary functions of time and the general solutions of the heat equation.

The MHD equations describing flows of a viscous homogeneous incompressible fluid of finite electrical conductivity (the MHDEs) have the following form:

$$
\begin{align*}
& \vec{u}_{t}+(\vec{u} \cdot \vec{\nabla}) \vec{u}-\triangle \vec{u}+\vec{\nabla} p+\frac{1}{4 \pi} \vec{H} \times \operatorname{rot} \vec{H}=\overrightarrow{0}, \\
& \vec{H}_{t}-\operatorname{rot}(\vec{u} \times \vec{H})-\nu_{m} \triangle \vec{H}=\overrightarrow{0}, \quad \operatorname{div} \vec{u}=0, \quad \operatorname{div} \vec{H}=0 \tag{1}
\end{align*}
$$

In (1) and below $\vec{u}=\left\{u^{a}(t, \vec{x})\right\}$ denotes the velocity field of a fluid, $p=p(t, \vec{x})$ denotes the pressure, $\vec{H}=\left\{H^{a}(t, \vec{x})\right\}$ denotes the magnetic intensity, ν_{m} is the coefficient of magnetic viscosity, $\vec{x}=\left\{x_{a}\right\}, \partial_{t}=\partial / \partial t, \partial_{a}=\partial / \partial x_{a}, \vec{\nabla}=\left\{\partial_{a}\right\}, \triangle=\vec{\nabla} \cdot \vec{\nabla}$ is the Laplacian. The kinematic coefficient of viscosity and fluid density are set equal to one.

The maximal Lie invariance algebra of the MHDEs (1) is an infinite-dimensional algebra $A(\mathrm{MHD})$ with the basis elements (see [1])

$$
\begin{align*}
& \partial_{t}, \quad D=2 t \partial_{t}+x_{a} \partial_{a}-u^{a} \partial_{u^{a}}-H^{a} \partial_{H^{a}}-2 p \partial_{p}, \\
& J_{a b}=x_{a} \partial_{b}-x_{b} \partial_{a}+u^{a} \partial_{u^{b}}-u^{b} \partial_{u^{a}}+H^{a} \partial_{H^{b}}-H^{b} \partial_{H^{a}}, a<b, \tag{2}\\
& R(\vec{m})=R(\vec{m}(t))=m^{a} \partial_{a}+m_{t}^{a} \partial_{u^{a}}-m_{t t}^{a} x_{a} \partial_{p}, \quad Z(\eta)=Z(\eta(t))=\eta \partial_{p},
\end{align*}
$$

where $m^{a}=m^{a}(t)$ and $\eta=\eta(t)$ are arbitrary smooth functions of t (for example, from $\left.C^{\infty}\left(\left(t_{0}, t_{1}\right), \mathbf{R}\right)\right)$. Hereafter repeated indices denote summation; we consider the indices a, b to take on values in $\{1,2,3\}$ and the indices i, j to take on values in $\{1,2\}$.

Following [2, 3], in this paper we reduce the MHDEs by means of the algebra

$$
\begin{equation*}
<R\left(\vec{m}^{1}(t)\right), R\left(\vec{m}^{2}(t)\right)>, \quad \text { where } \quad \vec{m}_{t t}^{1} \cdot \vec{m}^{2}-\vec{m}^{1} \cdot \vec{m}_{t t}^{2}=0 \tag{3}
\end{equation*}
$$

(that is, $\vec{m}_{t}^{1} \cdot \vec{m}^{2}-\vec{m}^{1} \cdot \vec{m}_{t}^{2}=C=$ const and we may assume that $C \in\{0 ; 1\}$) and $\nexists C_{i} \in \mathbf{R}: C_{i} \vec{m}^{i} \equiv \overrightarrow{0}$. An ansatz corresponding to this algebra can be obtained only for such t that $\operatorname{rank}\left(\vec{m}^{1}(t), \vec{m}^{2}(t)\right)=2$, and has the form

Copyright © 1997 by Mathematical Ukraina Publisher.
All rights of reproduction in any form reserved.

$$
\begin{align*}
& \vec{u}=\vec{w}+\lambda^{-1}\left(\vec{n}^{i} \cdot \vec{x}\right) \vec{m}_{t}^{i}-\lambda^{-1}(\vec{k} \cdot \vec{x}) \vec{k}_{t}, \quad \vec{H}=(4 \pi)^{1 / 2} \vec{\xi}, \\
& p=s-\frac{1}{2} \lambda^{-1}\left(\vec{m}_{t t}^{i} \cdot \vec{x}\right)\left(\vec{n}^{i} \cdot \vec{x}\right)-\frac{1}{2} \lambda^{-2}\left(m_{t t}^{i} \cdot \vec{k}\right)\left(\vec{n}^{i} \cdot \vec{x}\right)(\vec{k} \cdot \vec{x}), \tag{4}
\end{align*}
$$

where $\vec{w}=\left(w^{1}, w^{2}, w^{3}\right), \vec{\xi}=\left(\xi^{1}, \xi^{2}, \xi^{3}\right) ; w^{a}=w^{a}\left(z_{1}, z_{2}\right), \xi^{a}=\xi^{a}\left(z_{1}, z_{2}\right)$, and $q=q\left(z_{1}, z_{2}\right)$ are new unknown functions; $z_{1}=t, z_{2}=\vec{k} \cdot \vec{x}, \vec{k}=\vec{m}^{1} \times \vec{m}^{2}, \vec{n}^{1}=\vec{m}^{2} \times \vec{k}, \vec{n}^{2}=\vec{k} \times \vec{m}^{1}$, and $\lambda=\lambda(t)=\vec{k} \cdot \vec{k} \neq 0$.

Substituting ansatz (4) into the MHDEs, we obtain the system of differential equations for the functions w^{a}, ξ^{a}, and q :

$$
\begin{align*}
& \vec{w}_{1}+(\vec{k} \cdot \vec{w})\left(\vec{w}_{2}-\lambda^{-1} \vec{k}_{t}\right)+\lambda^{-1}\left(\vec{n}^{j} \cdot \vec{w}\right) \vec{m}_{t}^{j}-\lambda \vec{w}_{22}+s_{2} \vec{k}+ \\
& \quad\left(\vec{\xi} \cdot \vec{\xi}_{2}\right) \vec{k}-(\vec{k} \cdot \vec{\xi}) \vec{\xi}_{2}+z_{2} \vec{e}=\overrightarrow{0}, \tag{5}\\
& \vec{\xi}_{1}+(\vec{k} \cdot \vec{w}) \vec{\xi}_{2}-(\vec{k} \cdot \vec{\xi})\left(\vec{w}_{2}-\lambda^{-1} \vec{k}_{t}\right)-\lambda^{-1}\left(\vec{n}^{j} \cdot \vec{\xi}\right) \vec{m}_{t}^{j}-\nu_{m} \lambda \vec{\xi}_{22}=\overrightarrow{0}, \tag{6}\\
& \vec{k} \cdot \vec{w}_{2}=0, \quad \vec{k} \cdot \vec{\xi}_{2}=0, \tag{7}
\end{align*}
$$

where $z_{1}=t$ and $\vec{e}=\vec{e}(t)=2 \lambda^{-2} C \vec{k}_{t} \times \vec{k}+\lambda^{-2}\left(2 \vec{k}_{t} \cdot \vec{k}_{t}-\vec{k}_{t t} \cdot \vec{k}\right) \vec{k}$.
Equations (7) are integrated with respect to z_{2} to the following expressions: $\vec{k} \cdot \vec{w}=\psi(t)$ and $\vec{k} \cdot \vec{\xi}=\chi(t)$. Here $\psi=\psi(t)$ is an arbitrary smooth function of $z_{1}=t$, which can be transformed to zero by means of the transformation generated by the operator $R(\vec{l})$, where the vector-function \vec{l} is a solution of the system

$$
\vec{l}_{t t} \cdot \vec{m}^{i}-\vec{l} \cdot \vec{m}_{t t}^{i}=0, \quad \vec{k} \cdot\left(\vec{l}_{t}-\lambda^{-1}\left(\vec{n}^{i} \cdot \vec{l}\right) m_{t}^{i}+\lambda^{-1}(\vec{k} \cdot \vec{l}) \vec{k}_{t}\right)+\psi=0 .
$$

Therefore, without loss of generality we may assume that $\vec{k} \cdot \vec{w}=0$. The scalar product of equation (6) by \vec{k} gives $\chi_{t}=0$, that is, $\chi=$ const.

Let $f^{i}=f^{i}\left(z_{1}, z_{2}\right):=\vec{m}^{i} \cdot \vec{w}, g^{i}=g^{i}\left(z_{1}, z_{2}\right):=\lambda^{-1} \vec{n}^{i} \cdot \vec{\xi}$. Then

$$
\vec{w}=\lambda^{-1} f^{i} \vec{n}^{i}, \quad \vec{\xi}=g^{i} \vec{m}^{i}+\lambda^{-1} \chi \vec{k},
$$

and equation (5) multiplied by the scalar by \vec{k} is integrated with respect to z_{2} to the following expression for the function s :

$$
s=2 \lambda^{-2}\left(\vec{n}^{i} \cdot \vec{k}_{t}\right) \int f^{i} d z_{2}-\frac{1}{2}(\vec{\xi} \cdot \vec{\xi})+\frac{1}{2} \lambda^{-2}\left(\vec{k}_{t t} \cdot \vec{k}-2 \vec{k}_{t} \cdot \vec{k}_{t}\right) z_{2}^{2} .
$$

Let us multiply the scalar equation (5) by \vec{m}^{i} and equation (6) by \vec{n}^{i}. As a result, we obtain the linear system of PDEs with variable coefficients in the functions f^{i} and g^{i} :

$$
\begin{align*}
& f_{1}^{i}-\lambda f_{22}^{i}+C \lambda^{-1}\left(\left(\vec{m}^{i} \cdot \vec{m}^{2}\right) f^{1}-\left(\vec{m}^{i} \cdot \vec{m}^{1}\right) f^{2}\right)-\chi\left(\vec{m}^{i} \cdot \vec{m}^{j}\right) g_{2}^{j}- \\
& \quad 2 C \lambda^{-2}\left(\left(\vec{k} \times \vec{k}_{t}\right) \cdot \vec{m}^{i}\right) z_{2}=0, \tag{8}\\
& g_{1}^{i}-\nu_{m} \lambda g_{22}^{i}-\chi \lambda^{-2}\left(\vec{n}^{i} \cdot \vec{n}^{j}\right) f_{2}^{j}+2 \chi \lambda^{-2}\left(\vec{n}^{i} \cdot \vec{k}_{t}\right)=0
\end{align*}
$$

Let us consider particular cases.

1. $\chi=0, C=0$. Then $f_{\tau}^{i}=f_{\zeta \zeta}^{i}, g_{\tau}^{i}=\nu_{m} g_{\zeta \zeta}^{i}$. Hereafter $\tau=\int \lambda(t) d t, \zeta=z_{2}=\vec{k} \cdot \vec{x}$.
2. $\chi=0, C=1$. Then $g_{\tau}^{i}=\nu_{m} g_{\zeta \zeta}^{i}$ and $f^{i}=\theta^{i j}(t) \tilde{f}^{j}(\tau, \zeta)+\theta^{i 0}(t) \zeta$, where $\tilde{f} \tilde{\tau}^{i}=\tilde{f}_{\zeta \zeta}^{i}$, $\left(\theta^{1 i}(t), \theta^{2 i}(t)\right)$ are linearly independent solutions of the system

$$
\theta_{t}^{i}+\lambda^{-1}\left(\vec{m}^{i} \cdot \vec{m}^{2}\right) \theta^{1}-\lambda^{-1}\left(\vec{m}^{i} \cdot \vec{m}^{1}\right) \theta^{2}=0,
$$

and $\left(\theta^{10}(t), \theta^{20}(t)\right)$ is a particular solution of the inhomogeneous system

$$
\theta_{t}^{i}+\lambda^{-1}\left(\vec{m}^{i} \cdot \vec{m}^{2}\right) \theta^{1}-\lambda^{-1}\left(\vec{m}^{i} \cdot \vec{m}^{1}\right) \theta^{2}=2 \lambda^{-2}\left(\left(\vec{k} \times \vec{k}_{t}\right) \cdot \vec{m}^{i}\right)
$$

3. $\chi \neq 0, C=0$. Let $\nu_{m}=1$ and $\vec{m}_{t}^{i} \cdot \vec{m}^{j}=0$ additionally. Then we can assume that $\left|m^{i}\right|=1$ and $\vec{m}^{1} \cdot \vec{m}^{2}=0$. As a result, we construct the following class of solutions of the MHDEs with $\nu_{m}=1$:

$$
\begin{aligned}
\vec{u}= & \left(\varphi^{1 i}\left(t, \zeta_{+}\right)-\varphi^{2 i}\left(t, \zeta_{-}\right)\right) \vec{m}^{i}-((\vec{k} \cdot \vec{x}) \vec{k})_{t}, \\
\vec{\xi}= & \left(\varphi^{1 i}\left(t, \zeta_{+}\right)+\varphi^{2 i}\left(t, \zeta_{-}\right)+2 \chi \int\left(\vec{m}_{t}^{i} \cdot \vec{k}\right) d t\right) \vec{m}^{i}+\chi \vec{k}, \\
p= & -2\left(\vec{m}_{t}^{i} \cdot \vec{k}\right)\left(\int \varphi^{1 i}\left(t, \zeta_{+}\right) d \zeta_{+}-\int \varphi^{2 i}\left(t, \zeta_{-}\right) d \zeta_{-}\right)-\frac{1}{2}(\vec{\xi} \cdot \vec{\xi})+ \\
& \frac{1}{2}\left(\vec{k}_{t t} \cdot \vec{k}-2 \vec{k}_{t} \cdot \vec{k}_{t}\right) \zeta^{2}-\frac{1}{2}\left(\vec{m}_{t t}^{i} \cdot \vec{x}\right)\left(\vec{m}^{i} \cdot \vec{x}\right)-\frac{1}{2}\left(\vec{m}_{t t}^{i} \cdot \vec{k}\right)\left(\vec{m}^{i} \cdot \vec{x}\right)(\vec{k} \cdot \vec{x}),
\end{aligned}
$$

where $\vec{m}^{i}=\vec{m}^{i}(t):\left|m^{i}\right|=1, \vec{m}^{1} \cdot \vec{m}^{2}=0$, and $\vec{m}_{t}^{1} \cdot \vec{m}^{2}=0 ; \chi=$ const, $\vec{k}=\vec{m}^{1} \times \vec{m}^{2}$, $\zeta=\vec{k} \cdot \vec{x}, \zeta_{+}=\zeta+\chi t, \zeta_{-}=\zeta-\chi t, \varphi_{t}^{1 i}=\varphi_{\zeta_{+} \zeta_{+},}^{1 i}$, and $\varphi_{t}^{2 i}=\varphi_{\zeta_{-} \zeta_{-}}^{2 i}$.

References

[1] Nucci M.C., Group analysis for MHD equations, Atti Sem. Mat. Fis. Univ. Modena, 1984, V. XXXIII, 21-34.
[2] Fushchych W.I. and Popowych R.O., Symmetry reduction of the Navier-Stokes equations to linear two-dimensional systems of equations, Dopovidi Acad. Sci. Ukrainy, 1992, N 8, 29-37.
[3] Fushchych W.I. and Popowych R.O., Symmetry reduction and exact solution of the Navier-Stokes equations, J. Nonlin. Math. Phys., 1994, V.1, N 1, 75-113; N 2, 158-188.

