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Abstract
Large classes of Lie solutions of the MHD equations describing the flows of a viscous ho-
mogeneous incompressible fluid of finite electrical conductivity are constructed. These
classes contain a number of arbitrary functions of time and the general solutions of
the heat equation.

The MHD equations describing flows of a viscous homogeneous incompressible fluid of
finite electrical conductivity (the MHDEs) have the following form:

~ut + (~u · ~∇)~u−4~u+ ~∇p+ 1
4π
~H × rot ~H = ~0,

~Ht − rot(~u× ~H)− νm4 ~H = ~0, div ~u = 0, div ~H = 0.
(1)

In (1) and below ~u = {ua(t, ~x)} denotes the velocity field of a fluid, p = p(t, ~x) denotes the
pressure, ~H = {Ha(t, ~x)} denotes the magnetic intensity, νm is the coefficient of magnetic
viscosity, ~x = {xa}, ∂t = ∂/∂t, ∂a = ∂/∂xa, ~∇ = {∂a}, 4 = ~∇ · ~∇ is the Laplacian. The
kinematic coefficient of viscosity and fluid density are set equal to one.

The maximal Lie invariance algebra of the MHDEs (1) is an infinite-dimensional al-
gebra A(MHD) with the basis elements (see [1])

∂t, D = 2t∂t + xa∂a − ua∂ua −Ha∂Ha − 2p∂p,

Jab = xa∂b − xb∂a + ua∂ub − ub∂ua +Ha∂Hb −Hb∂Ha , a < b,

R(~m) = R(~m(t)) = ma∂a +ma
t ∂ua −ma

ttxa∂p, Z(η) = Z(η(t)) = η∂p,

(2)

where ma = ma(t) and η = η(t) are arbitrary smooth functions of t (for example, from
C∞((t0, t1),R) ). Hereafter repeated indices denote summation; we consider the indices
a, b to take on values in {1, 2, 3} and the indices i, j to take on values in {1, 2}.

Following [2, 3], in this paper we reduce the MHDEs by means of the algebra

< R(~m1(t)), R(~m2(t)) >, where ~m1
tt · ~m2 − ~m1 · ~m2

tt = 0 (3)

(that is, ~m1
t · ~m2 − ~m1 · ~m2

t = C = const and we may assume that C ∈ {0; 1}) and
6 ∃Ci ∈R : Ci ~m

i ≡ ~0. An ansatz corresponding to this algebra can be obtained only for
such t that rank(~m1(t), ~m2(t)) = 2, and has the form
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~u = ~w + λ−1(~ni · ~x)~mi
t − λ−1(~k · ~x)~kt, ~H = (4π)1/2~ξ,

p = s− 1
2λ
−1(~mi

tt · ~x)(~ni · ~x)− 1
2λ
−2(mi

tt · ~k)(~ni · ~x)(~k · ~x),
(4)

where ~w = (w1, w2, w3), ~ξ = (ξ1, ξ2, ξ3); wa = wa(z1, z2), ξa = ξa(z1, z2), and q = q(z1, z2)
are new unknown functions; z1 = t, z2 = ~k · ~x, ~k = ~m1 × ~m2, ~n1 = ~m2 × ~k, ~n2 = ~k × ~m1,
and λ = λ(t) = ~k · ~k 6= 0.

Substituting ansatz (4) into the MHDEs, we obtain the system of differential equations
for the functions wa, ξa, and q:

~w1 + (~k · ~w)(~w2 − λ−1~kt) + λ−1(~nj · ~w)~mj
t − λ~w22 + s2~k+

(~ξ · ~ξ2)~k − (~k · ~ξ)~ξ2 + z2~e = ~0,
(5)

~ξ1 + (~k · ~w)~ξ2 − (~k · ~ξ)(~w2 − λ−1~kt)− λ−1(~nj · ~ξ)~mj
t − νmλ~ξ22 = ~0, (6)

~k · ~w2 = 0, ~k · ~ξ2 = 0, (7)

where z1 = t and ~e = ~e(t) = 2λ−2C~kt × ~k + λ−2(2~kt · ~kt − ~ktt · ~k)~k.
Equations (7) are integrated with respect to z2 to the following expressions: ~k· ~w = ψ(t)

and ~k · ~ξ = χ(t). Here ψ = ψ(t) is an arbitrary smooth function of z1 = t, which can be
transformed to zero by means of the transformation generated by the operator R(~l), where
the vector-function ~l is a solution of the system

~ltt · ~mi −~l · ~mi
tt = 0, ~k · (~lt − λ−1(~ni ·~l)mi

t + λ−1(~k ·~l)~kt) + ψ = 0.

Therefore, without loss of generality we may assume that ~k · ~w = 0. The scalar product
of equation (6) by ~k gives χt = 0, that is, χ = const.

Let f i = f i(z1, z2) := ~mi · ~w, gi = gi(z1, z2) := λ−1~ni · ~ξ. Then

~w = λ−1f i~ni, ~ξ = gi ~mi + λ−1χ~k,

and equation (5) multiplied by the scalar by ~k is integrated with respect to z2 to the
following expression for the function s:

s = 2λ−2(~ni · ~kt)
∫
f idz2 − 1

2(~ξ · ~ξ) + 1
2λ
−2(~ktt · ~k − 2~kt · ~kt)z2

2 .

Let us multiply the scalar equation (5) by ~mi and equation (6) by ~ni. As a result, we
obtain the linear system of PDEs with variable coefficients in the functions f i and gi:

f i
1 − λf i

22 + Cλ−1((~mi · ~m2)f1 − (~mi · ~m1)f2)− χ(~mi · ~mj)gj
2−

2Cλ−2((~k × ~kt) · ~mi)z2 = 0,

gi
1 − νmλg

i
22 − χλ−2(~ni · ~nj)f j

2 + 2χλ−2(~ni · ~kt) = 0

(8)

Let us consider particular cases.

1. χ = 0, C = 0. Then f i
τ = f i

ζζ , g
i
τ = νmg

i
ζζ . Hereafter τ =

∫
λ(t)dt, ζ = z2 = ~k · ~x.

2. χ = 0, C = 1. Then gi
τ = νmg

i
ζζ and f i = θij(t)f̃ j(τ, ζ) + θi0(t)ζ, where f̃ i

τ = f̃ i
ζζ ,

(θ1i(t), θ2i(t)) are linearly independent solutions of the system

θi
t + λ−1(~mi · ~m2)θ1 − λ−1(~mi · ~m1)θ2 = 0,
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and (θ10(t), θ20(t)) is a particular solution of the inhomogeneous system

θi
t + λ−1(~mi · ~m2)θ1 − λ−1(~mi · ~m1)θ2 = 2λ−2((~k × ~kt) · ~mi).

3. χ 6= 0, C = 0. Let νm = 1 and ~mi
t · ~mj = 0 additionally. Then we can assume that

|mi| = 1 and ~m1 · ~m2 = 0. As a result, we construct the following class of solutions of the
MHDEs with νm = 1:

~u = (ϕ1i(t, ζ+)− ϕ2i(t, ζ−))~mi − ((~k · ~x)~k)t,

~ξ = (ϕ1i(t, ζ+) + ϕ2i(t, ζ−) + 2χ
∫
(~mi

t · ~k)dt)~mi + χ~k,

p = −2(~mi
t · ~k)(

∫
ϕ1i(t, ζ+)dζ+ −

∫
ϕ2i(t, ζ−)dζ−)− 1

2(~ξ · ~ξ)+
1
2(~ktt · ~k − 2~kt · ~kt)ζ2 − 1

2(~mi
tt · ~x)(~mi · ~x)− 1

2(~mi
tt · ~k)(~mi · ~x)(~k · ~x),

where ~mi = ~mi(t) : |mi| = 1, ~m1 · ~m2 = 0, and ~m1
t · ~m2 = 0; χ = const, ~k = ~m1 × ~m2,

ζ = ~k · ~x, ζ+ = ζ + χt, ζ− = ζ − χt, ϕ1i
t = ϕ1i

ζ+ζ+
, and ϕ2i

t = ϕ2i
ζ−ζ−

.
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