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Abstract
An analytical method to study the effect of viscosity of a medium and the wave
number on sound propagation and sound attenuation numbers in circular ducts has
been presented. The method is based on the variation of parameters of the solution
corresponding to the case of inviscid acoustic waves in circular ducts and axisymmetric
modes. A mathematical model is constructed to describe the physical problem in
general. Three basic assumptions have been considered, namely, each flow quantity
has been written as the sum of a steady mean flow and an unsteady acoustic flow
quantity. The effect of thermal conductivity of the gas has been neglected as well as
no mean flow. The results for a wide range of wave numbers and Reynolds numbers
show that for a viscous medium, the propagation number is a weak function of the
Reynolds number, and as the Reynolds number increases, the propagation number
approaches its inviscid value. Also the propagation number is independent of the wave
number. For the attenuation number, it decreases monotonically with the increase of
the Reynolds number and it vanishes when Reynolds number exceeds 104.

1 Introduction

Study of the attenuation of sound propagation in ducts with sound-absorbing material on
the interior of the walls has received considerable attention from researchers since nearly
the middle of the twentieth century. In 1939, Morse [8] studied rigorously the propagation
of sound in ducts lined with absorbing material, but his studies were limited to the case
of liners in which axial wave proparation does not occur. Scott [15], in 1946, took into
consideration axial wave propagation in the liner. Due to the importance of viscosity of
the medium in the field of duct acoustics, Rayleigh [13] in 1945 studied its effect on the
attenuation of acoustic modes in ducts. In fact, the viscosity of the medium together with
its thermal conductivity are partially responsible for the natural attenuation of sound
waves. The effect of these two parameters had been studied experimentally during the
early years of the 1950’s by Beatty [1] in 1950, Shaw [16] in 1953 and Lambert [2] in 1953.
During the 1960’s and early 1970’s, the need to reduce aircraft engine noise became es-
sential and of major concern to the public and governments, and the researchers directed
their attention to study the duct acoustic problem in the presence of mean flow in the
duct. The earliest such papers appeared to be that of Pridmore–Brown [12] in 1958, who
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considered the propagation of sound in a flat duct when the velocity profile was given
by the one seventh power law. The same problem, for the case of hard-walled duct, was
solved numerically by Mungur and Gladwell [9] in 1969. Their numerical calculations
were based upon a Runge–Kutta algorithm. In the same year, Mungur and Plumblee [10]
extended the calculations of Mungur and Gladwell [9] to a soft-walled annulus. In 1973,
Mikhail [3] and Mikhail and Abdelhamid [4–6] studied sound propagation in ducts, with
finite admittance at the walls, in the presence of viscous mean flow.

The interesting paper by Nayfeh, Kaiser and Telionis [11], in 1975, refers to more than
150 references as well as reviews all aspects of duct acoustics.

In 1993, Mikhail and Tantawy [7] studied the effect of the medium viscosity on sound
propagation and attenuation in two-dimensional ducts in the absence of mean flow.

Analytic studies for the case of sound propagation for general mean flows in tunnels
with a viscous medium have not been found.

In this paper we study analytically the effect of viscosity of the medium and the wave
number, in the absence of mean flow, on the propagation number and the attenuation
number.

In fact, our work is a necessary preliminary to the discussion of the more general
problem of attenuation of sound in tunnels of a viscous and moving medium.

2 Formulation of the problem

2.1 Basic equations

The flow field inside a circular duct given by Schlichting [14], is governed by the following
five basic equations in cylindrical coordinates.
(1) Continuity equation

∂ρ

∂t
+

1
r

∂

∂r
(ρrvr) +

1
r

∂

∂θ
(ρvθ) +

∂

∂z
(ρvz) = 0, (2.1)

where ρ is the density, t is the time, (vr, vθ, vz) are velocities in the (r, θ, z) directions,
respectively.
(2) Momentum equation:
r-component

ρ

(
∂vr

∂t
+ vr

∂vr

∂r
+

vθ

r

∂vr

∂θ
+ vz

∂vr

∂z

)
=

−∂p

∂r
+

1
r

∂

∂r

(
2µr

∂vr

∂r

)
+

1
r

∂

∂θ

[
µ

(
∂vθ

∂r
+

1
r

∂vr

∂θ
− vθ

r

)]
+

∂

∂z

[
µ

(
∂vz

∂r
+

∂vr

∂z

)]
− 2

3r

∂

∂r

[
µ

(
∂

∂r
(rvr) +

∂vθ

∂θ
+ r

∂vz

∂z

)]
,

(2.2)
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θ-component

ρ

(
∂vθ

∂t
+ vr

∂vθ

∂r
+

vθ

r

∂vθ

∂θ
+ vz

∂vθ

∂z

)
=

−1
r

∂p

∂θ
+

1
r

∂

∂r

[
µ

(
r
∂vθ

∂r
+

∂vr

∂θ
− vθ

)]
+

2
r2

∂

∂θ

[
µ

(
∂vθ

∂θ
+ vr

)]
+

∂

∂z

[
µ

(
∂vz

r∂θ
+

∂vθ

∂z

)]
− 2

3r

∂

∂θ

[
µ

(
1
r

∂

∂r
(rvr) +

1
r

∂vθ

∂θ
+

∂vz

∂z

)]
,

(2.3)

z-component

ρ

(
∂vz

∂t
+ vr

∂vz

∂r
+

vθ

r

∂vz

∂θ
+ vz

∂vz

∂z

)
=

−∂p

∂z
+

1
r

∂

∂r

[
µ

(
1
r

∂vz

∂r
+

∂vr

∂z

)]
+

1
r

∂

∂θ

[
µ

(
1
r

∂vz

∂θ
+

∂vθ

∂z

)]
+

∂

∂z

(
2µ

∂vz

∂z

)
− 2

3
∂

∂z

{
µ

[
1
r

∂

∂r
(rvr) +

1
r

∂vθ

∂θ
+

∂vz

∂z

]}
.

(2.4)

(3) Energy equation for a perfect gas:

ρcp
∂T

∂t
=

∂p

∂t
+

1
r

∂

∂r

(
kr

∂T

∂r

)
+

1
r

∂

∂θ

(
k

r

∂T

∂θ

)
+

∂

∂z

(
k
∂T

∂z

)
+ µφ00, (2.5)

where k is the thermal conductivity of a gas, cp is the specific heat at constant pressure,
T is the temperature, and φ00 is the dissipation function given by:

φ00 = 2

[(
∂vr

∂r

)2

+
(

1
r

∂vθ

∂θ
+

vr

r

)2

+
(

∂vz

∂z

)2
]

+
(

∂vθ

∂r
+

1
r

∂vr

∂θ
− vθ

r

)2

+

(
∂vr

∂z
+

∂vz

∂r

)2

+
(

∂vθ

∂z
+

1
r

∂vz

∂θ

)2

− 2
3

[
1
r

∂

∂r
(rvr) +

1
r

∂vθ

∂θ
+

∂vz

∂z

]2
.

(4) State equation

P = ρRT, (2.6)

where R is the gas specific constant.
Boundary condition:
Along the boundary of a duct, the radial component of a velocity vanishes.

2.2 Perturbation of the flow

Following Nayfeh, Kaiser and Telionis [11], we assume that each flow quantity q(r, t),
which corresponds to ρ, u, v, p, T and φ00, is the sum of a steady mean flow q0(t) and an
unsteady acoustic flow quantity q1(r, t), where r is the position vector. Also, in order to
focus on the effect of viscosity on the attenuation of acoustic waves, we neglect the effect
of thermal conductivity of the gas, i.e., we set k = 0. Then, substituting the assumed
expressions of the flow quantities into equations (2.1) to (2.6), taking into consideration
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that the steady mean flow quantities satisfy the basic equations and neglecting nonlinear
acoustic quantities, we obtain

∂ρ1

∂t
+

1
r

∂

∂r
(ρ0ru1r + ρ1ru0r) +

1
r

∂

∂θ
(ρ0u1θ + ρ1u0θ) +

∂

∂z
(ρ0u1z + ρ1u0z) = 0, (2.7)

ρ1

(
∂u0r

∂t
+ u0r

∂u0r

∂r
+

u0θ

r

∂u0θ

∂r
+ u0z

∂u0r

∂z

)
+

ρ0

(
∂u1r

∂t
+ u1r

∂u0r

∂r
+

u1θ

r

∂u0r

∂r
+

u0θ

r

∂u1r

∂r
+ u1z

∂u0r

∂r

)
=

−∂p1

∂r
+

1
r

∂

∂r

(
2µr

∂u1r

∂r

)
− 1

r

∂

∂θ

[
µ

(
∂u1θ

∂r
+

1
r

∂u1r

∂θ
− u1θ

r

)]
+

∂

∂z

[
µ

(
∂u1z

∂r
+

∂u1r

∂z

)]
− 2

3r

∂

∂r

[
µr

(
1
r

∂

∂r
(ru1r) +

1
r

∂u1θ

∂θ
+

∂u1z

∂z

)]
,

(2.8)

ρ1

(
∂u0θ

∂t
+ u0r

∂u0θ

∂r
+

u0θ

r

∂u0θ

∂θ
+ u0z

∂u0θ

∂z

)
+

ρ0

(
∂u1θ

∂t
+ u1r

∂u0θ

∂r
+ u0r

∂u1θ

∂r
+

u1θ

r

∂u0θ

∂θ
+

u0θ

r

∂u1θ

∂θ
+ u1z

∂u0θ

∂z
+ u0z

∂u1θ

∂z

)
= −1

r

∂p1

∂r
+

1
r

∂

∂r

[
µr

(
∂u1θ

∂r
+

1
r

∂u1r

∂θ
− u1θ

r

)]
+

1
r

∂

∂θ

[
µ

(
∂u1z

∂θ
+

∂u1θ

∂z

)]
+

∂

∂z

[
µ

(
∂u1z

r∂θ
+

∂u1θ

∂z

)]
− 2

3r

∂

∂θ

[
µ

(
1
r

∂

∂r
(ru1r) +

1
r

∂u1θ

∂θ
+

∂u1z

∂z

)]
.

(2.9)

ρ1

(
∂u0z

∂t
+ u0r

∂u0z

∂r
+

u0θ

r

∂u0z

∂θ
+ u0z

∂u0z

∂z

)
+

ρ0

(
∂u1z

∂t
+ u1r

∂u0z

∂r
+ u0r

∂u1z

∂r
+

u1θ

r

∂u0z

∂r
+

u0θ

r

∂u1z

∂r
+ u1z

∂u0z

∂z
+ u0z

∂u1z

∂z

)
= −∂p1

∂z
+

1
r

∂

∂r

[
µr

(
∂u1z

∂r
+

∂u1r

∂z

)]
+

1
r

∂

∂θ

[
µ

(
1
r

∂u1z

∂θ
+

∂u1θ

∂z

)]
+

∂

∂z

(
2µ

∂u1z

∂z

)
− 2

3
∂

∂z

[
µ

(
1
r

∂

∂r
(ru1r) +

1
r

∂u1θ

∂θ
+

∂u1z

∂z

)]
,

(2.10)

ρ0cp
∂T1

∂t
+ ρ1cp

∂T0

∂t
=

∂p1

∂t
+ µφ1,00, (2.11)

p1 = ρ0RT1 + ρ1RT0. (2.12)

The solution of each flow quantity q(r, t) is assumed to be of the form

q(r, t) = q(r) exp(i(ωt + mθ)− γz), (2.13)

where ω is the acoustic frequency, γ is the complex wave number, and m is an integer.
Substituting (2.13) into equations (2.7) to (2.12), noting that u0r = 0, u0θ = 0, u0z = V (r),
and m = 0 which corresponds to axisymmetric modes, we get

Ωρ1 = ρ0

(
γuz −

duz

dr
− ur

r

)
, (2.14)
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where Ω = iω − γV (r)

4µ

3
d2ur

dr2
+

2µ

3r

dur

dr
+ (µγ2 − ρ0Ω)ur =

dp

dr
+

γµ

3
duz

dr
− 2µγ

3
uz

r
, (2.15)

(iωρ0 − γV )uθ −
µ

r

(
r
d2uθ

dr2
+

duθ

dr

)
− µγ2uθ = 0, (2.16)

µ
d2uz

dr2
+

µ

r

duz

dr
+
(

4
3
µγ2 − ρ0Ω

)
uz =

µγ

3
dur

dr
+
(

ρ0
dV

dr
+

µγ

3r

)
ur − γp, (2.17)

iωT =
iωp

ρ0cp
+

2µ

ρ0cp

dV

dr

(
duz

dr
− γur

)
, (2.18)

p = R(ρ0T + T0ρ). (2.19)

2.3 Normalized perturbed governing equations

Velocities, lengths, time, density, pressure, and temperature, can be made dimensionless
by using the ambient speed of sound ca, a characteristic duct radius ra, the time ra/ca,
the density ρa, the ambient pressure ρac

2
a, and the mean temperature T0, respectively.

Denote these dimensionless variables by un, vn; rn, zn; tn, ρn, pn, and Tn. Substituting the
normalized parameters in equations (2.14) to (2.19), after dropping the subscripts n and
1 we get the following governing equations

Ωρ = ρ

(
δuz −

dur

dr
− ur

r

)
, (2.20)

1
Re

(
d2uz

dr2
+

1
r

duz

dr

)
+

(
4
3

δ2

Re
− ρ0Ω

)
uz=

δ

3Re

(
dur

dr
+

ur

r

)
+ρ0ur

dM

dr
− δp, (2.21)

4
3Re

d2ur

dr2
+

2
3rRe

dur

dr
+

(
δ2

Re
− ρ0z

)
ur =

δ

3Re

(
duz

dr
− 2

uz

r

)
+

dp

dr
, (2.22)

(Ω + δM)
Tρ0

ν − 1
= (Ω + δM)p +

2
Re

dM

dr

(
duz

dr
− δur

)
, (2.23)

p =
1
ν

(ρ0T + ρ), (2.24)

where Ω(r) = iω(1−kM), k =
γ

iK
, K =

ω

ca
, γra = δ = iKkra = δ1+iδ2, and Re =

ρacara

µ
is the Reynolds number.

Eliminating ρ and T from equations (2.20) to (2.24), we get three equations in the
three unknowns p, ur and uz which are:

1
Re

(
d2uz

dr2
+

1
r

duz

dr

)
+

(
4
3

δ2

Re
− ρ0Ω

)
uz =

δ

3Re

(
dur

dr
+

ur

r

)
+ ρ0ur

dM

dr
− δp,(2.25)

4
3Re

d2ur

dr2
+

2
3rRe

dur

dr
+

(
δ2

Re
− ρ0Ω

)
ur =

dp

dr
+

δ

3Re

(
duz

dr
− 2uz

r

)
, (2.26)

p(Ω + δM) =
2(ν − 1)

Re

dM

dr

(
duz

dr
− δur

)
+ ρ0

(
1 +

δM

Ω

)(
δuz −

dur

dr
− ur

r

)
. (2.27)
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3 The case of inviscid acoustic waves with a zero
mean flow

In the case of inviscid acoustic waves, we substitute µ = 0 or equivalently Re→∞. Hence,
equations (2.25) to (2.27) take the form

ρ0Ωuz = δp− ρ0ur
dM

dr
, (3.1)

ρ0Ωur = −dp

dr
, and (3.2)

p(Ω + δM) = ρ0

(
1 +

δM

Ω

)(
δuz −

dur

dr
− ur

r

)
.

Eliminating ur and uz from these three equations, we get the following equation for pres-
sure

d2p

dr2
+

1
r

dp

dr
+

2k

1− kM

dM

dr

dp

dr
+ r2

aK
2[(1− kM)2 − k2]p = 0.

If we assume no mean flow , i.e., M = 0, then the equation for the pressure takes the form:

d2p

dr2
+

1
r

dp

dr
+ r2

aK
2(1− k2)p = 0. (3.3)

But

r2
aK

2(1− k2) = r2
aK

2

[
1−

(
γca

iω

)2
]

= r2
aK

2

(
1 +

γ2c2
a

ω2

)
> 0.

Hence, equation (3.3) represents the zeroth-order Bessel differential equation which has
the general solution

p(r) = AJ0

(
raK

√
1− k2 r

)
+ BY0

(
raK

√
1− k2 r

)
, (3.4)

and on the basis of physical considerations, we take B = 0.

At r = 1, ur = 0, hence from equation (3.2) we get
dp

dr
= 0, and, consequently, by using

(3.4), we get

Ara

√
1− k2J1

(
raK

√
1− k2

)
= 0,

where raK
√

1− k2 = An are the roots of J1(x) = 0.
Hence,

γ2 =
A2

n

r2
a

− ω2

c2
a

.

Note that no propagation occurs unless the frequency is higner than the cut-off frequency,
i.e., γ is imaginary. The condition for propagation is then

ω >
Anca

ra
.
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From (3.1), (3.4) and M = 0 we have

uz =
δA

ρ0Ω
J0

(
raK

√
1− k2 r

)
,

and from (3.2), (3.4) and M = 0 we have

ur =
AraK

√
1− k2

ρ0Ω
J1

(
raK

√
1− k2 r

)
.

For the case of x =
(
raK
√

1− k2 r
)
� 1, we can approximate

J0(x) =
√

2
πx

cos
(

x− π

4

)
+ o

(
1
x

)
.

Hence,

uz = A0r
−1/2 cos

(
ar − π

4

)
, and

ur = A1r
−1/2 sin

(
ar − π

4

)
+ A2r

−3/2 cos
(

ar − π

4

)
,

where

A0 =
√

2
πa

δA

ρ0Ω
, A1 =

√
2a

π

A

ρ0Ω
, A2 =

√
2
πa

A

2ρ0Ω
, a = raK

√
1− k2.

4 Case of viscous acoustic waves with a zero mean flow

In this case, we have M = M0 = 0, ρ0 = 1, T0 = 1, hence Ω = iraK. Therefore, equations
(2.25) to (2.27) become

1
Re

(
d2uz

dr2
+

1
r

duz

dr

)
+

(
4
3

δ2

Re
− Ω

)
uz =

δ

3Re

(
dur

dr
+

ur

r

)
− δp, (4.1)

4
3Re

d2ur

dr2
+

2
3rRe

dur

dr
+

(
δ2

Re
− Ω

)
ur =

dp

dr
+

δ

3Re

(
duz

dr
− 2uz

r

)
, (4.2)

Ωp = δuz −
dur

dr
− ur

r
. (4.3)

Eliminating the pressure p from the three equations (4.1), (4.2) and (4.3), we get two
simultaneous equations in ur and uz as follows

d2uz

dr2
+

1
r

duz

dr
+ R1uz −Rz

(
dur

dr
+

ur

r

)
= 0, and (4.4)

R3
d2ur

dr2
+
(

R3 −
1
2

)
1
r

dur

dr
+ R4ur −R5

ur

r2
− 3

4
R2

duz

dr
+ R6

uz

r
= 0, (4.5)
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where

R1 =
4
3
δ2 − ΩRe +

δ2Re

Ω
, R2 =

δ

3
+

δRe

Ω
, R3 = 1 +

3Re

4Ω
,

R4 =
3
4
δ2 − 3Ω

4
Re, R5 =

3Re

4Ω
, R6 =

δ

2
.

We postulate a solution of the form

uz = A0r
−1/2 cos

(
ar − π

4

)
, and (4.6)

ur = A1r
−1/2 sin

(
ar − π

4

)
+ A2r

−3/2 cos
(

ar − π

4

)
(4.7)

where A0, A1, and A2 are functions of Re, a, and δ. Substituting (4.6) and (4.7) into (4.4)
and (4.5), we get

B1r
−3/2 sin

(
ar − π

4

)
+
(
B2r

−1/2 + B3r
−5/2

)
cos

(
ar − π

4

)
= 0, (4.8)

and (
B4r

−1/2 + B5r
−5/2

)
sin
(

ar − π

4

)
+ B6r

−3/2 cos
(

ar − π

4

)
= 0, (4.9)

where

B1 = R2

(
aA2 −

A1

2

)
,

B2 = A0

(
R1 − a2

)
−R2aA1,

B3 =
A0

4
+ R2

A2

2
,

B4 = A1

(
R4 −R3a

2
)

+
3
4
R2aA0,

B5 = A1

(
R3

4
−R5 +

1
4

)
+ A2

(
2R3a +

a

2

)
,

B6 = A1
a

2
+ A0

(
R6 +

3
8
R2

)
+ A2(R4 −R3a

2).



(4.10)

From (4.8) and (4.9)

B1B6 − r2B2B4 = 0

from which we get

B2B4 = 0, and B1B6 = 0.

Assume
A2

A1
=

1
2a

. (4.11)

From the boundary condition ur = 0 at r = 1 we get

tan
(

a− π

4

)
= −A2

A1
. (4.12)
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If B2 = 0, then from (4.10)

A1 =
R1 − a2

R2a
A0. (4.13)

If B6 = 0, then from (4.10),

A2 =
R1 − a2 + 2R6R2 + 3

4R2
2

2R2(R3a2 −R4)
A0. (4.14)

From (4.11) and (4.12) we get

a tan
(

a− π

4

)
= −1

2
,

from which a can be determined. From (4.11), (4.13) and (4.14) we get(
R1 − a2 + 2R2R6 +

3
4
R2

2

)
a2 = (R1 − a2)(R3a

2 −R4),

from which δ and consequently δ1 and δ2 can be determined.

5 Results and discussion

We studied, analytically, the effect of viscosity of the medium and wave number raK on
the attenuation number δ1 and the propagation number δ2 for a wide range of both large
Reynolds numbers Re and wave numbers raK.

5.1 The effect of viscosity on the propagation number δ2

From the analysis presented in section 3, it is shown that for an inviscid medium, the
propagation constant δ2 can be computed from the formula

δ∗2 =
√

(raK)2 −A2
n,

where An are the zeros of J1(x) = 0.
We come to conclusion that the propagation number δ2 is a weak function of Re, and

that as Re increases, δ2 → δ∗2 (its inviscid value). This result in in a good agreement with
the results of Mikhail and Tantawy [7] for the case of ducts. Therefore, as is known, for
all practical purposes we can neglect the effect of viscosity on the wave propagation.

Also the propagation number is dependent of raK.

5.2 The effect of viscosity on the attenuation number δ1

On the study of effects of the medium viscosity on the attenuation number δ1 for the
zeroth, first and secondmodes, we found that: for the case of zero and higher modes,
the attenuation of sound decreases monotonically with an increase of Re, and for high
Re it decreases most rapidly by an increase of Re. Also, for Re > 104 the attenuation
number tends to zero as Re increases. Therefore, for high Re, the attenuation is practically
independent of the wave number raK.
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For constant Re, we conclude that the attenuation number increases monotonically as
the wave number, raK, increases.

In conclusion, we can say that the medium viscosity has a noticeable effect on the
attenuation numbers and low Reynolds numbers. Therefore, in such situations we cannot
neglect the viscosity of the medium.

Also, for fixed Re and raK the values of δ1 of different modes vary slightly. This leads
to the fact that the change in the sound wave is very slow along the circular duct length.
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