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Abstract—A deep learning scheme based on compressive 

sensing to detect community structure of large-scale social 

network is presented. Our contributions in this work are as 

follows: First, we reduced the high-dimensional feature of social 

media data via compressive sensing by using random 

measurement matrix; Second, deep belief network is employed to 

learn unsupervised from the low-dimensional samples; Finally 

the model is fine-tuned by supervised learning from a small scale 

sample sets with class labels. The effectiveness of the proposed 

scheme is confirmed by the experiment results. 
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I.  Introduction  

Over the past decade, research on community detection 

has mostly focused on small-scale social network. These 

algorithms can approximately divide into three categories: The 

first one is based on graph theory including GN [1] and 

FastGN[2]. Some other methods have been developed based 

on matrix factorization. For example, symmetric nonnegative 

matrix (SymNMF) has promising performance [3]. The 

methods based on optimization called N-Cut and A-Cut were 

proposed in [4].These methods can help us understand the 

network structure and reveal the network functions and have 

high efficiency when the size of network is small. However, 

large-scale and high-dimensional network brings low 

efficiency and the complexity of these algorithms grows 

exponentially.  

Compressive sensing (CS) [5][6] has outstanding 

performance in processing sparse data. This theory has proven 

to break the Nyquist sampling theorem in data sampling 

process and is able to reconstruct the initial signal accurately 

from the fewer projections by using the sparse priors of it. 

Since the characteristic of social network is high-dimension 

and large scale, the connections between nodes is relatively 

less. For example, the sparsity of MovieLens dataset is 4.5%, 

the sparsity of Netflix is 1.2%, and the sparsity of Delicious is 

0.046%. Taobao has eight hundred millions commodities at 

present, however, the number of products that an average 

Taobao user browsed is less than 1000, so its sparsity is below 

one millionth. To the best of our knowledge, the scale of 

social network is larger, the dataset is sparser. CS is capable of 

reducing dimension of dataset to extract the essential 

information by utilizing random measurement matrix, so it is 

suitable to handle high-dimensional network. 

Deep learning (DL) [7][8] is a rising algorithm of 

multilayer neural network. This method solves the problem of 

local minimum and unsupervised training. DL adopts 

unsupervised learning algorithm in training phase, and utilize 

small labeled samples to supervised fine-tune the model in the 

final phase. The representative set is selected from large-scale 

social network, and its community labels can be obtained 

through traditional algorithms mentioned above. 
In order to learn community structure of large-scale and 

high-dimensional network, we present a deep learning scheme 
to detect community structure based on compressive sensing 
in this paper. The proposed approach can improve the 
efficiency of extracting community structure process from two 
aspects. On the one hand, by using random measurement of 
compressive sensing theory, we can reduce the dimension of 
social network feature. On the other hand, by using deep belief 
network (DBN)[9] model, the learning and prediction problem 
of large-scale community structure become feasible. 

II. Four Steps of Proposed Scheme  
The overall procedure of the proposed community 

detection scheme is shown in Fig. 1. The scheme has four 
steps: Firstly, community structure of the representative set 
which extracted from original adjacency matrix is detected via 
GN algorithm. Then, the dimension of original adjacency 
matrix is reduced via random measurement matrix. 
Unsupervised training of DBN is implemented by utilizing 
low-dimensional feature samples. Finally, the small set of 
labeled samples that obtained in the first step is used to fine-
tune the DBN with supervision. 
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 Fig.1. Overall procedure of the algorithm 
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A. Detect Community Structure of Representative Set 

The representative set is a number of nodes V that 

randomly selected from the large-scale complex 
networks V by keeping the connections between nodes. The 

connections are transformed into adjacency matrix A and 

adjacency matrix of representative set is A . 

GN is a traditional community detection algorithm. The 
fundament thought of GN is that connection strength in one 
community is high and is usually low between communities. 
The algorithm employs edge betweenness to determine the 
attribute of the edges. Edge betweenness of an edge is defined 
as the number of shortest paths between pairs of vertices that 
run along it. Thus, the edge betweenness is high if the edge 
connecting communities. By considering this, the 
communities can be divided though deleting these edges. In 
basis of calculating edge betweenness, GN repeated iteration 
to reveal community structure.  

The representative set is denote by the triple 

{ , , | , C, 0 1}
i j ij i j ij

S v c s v V c s or       , where C is 

community labels set, and the number of elements in C is N, 

ij
s is the tag that if 

i
v belongs to

j
c , =1

ij
s else =0

ij
s .   

B. Reduce Dimensions of Adjacency Matrix 

Candes and Donoho proposed CS theory in [5][6]. The 

theory is to reconstruct the original signal X when the 

measurement matrix ( )M NR M N  and linear 

measurement value
MY R are known, and that can be written 

as 

Y X                                

Obviously, (1) has infinite solutions. CS theory indicates 
that X can be reconstructed accurately by solving the 

minimum norm of 0l . There are two requirements to confirm 

the reconstruction: a) X must be sufficient sparse. b) 
Measurement matrix  satisfies restricted isometry property 
(RIP) [10]. The expression is formulated as 

                
0

ˆ argmin . .X X s t X Y                            

By designing appropriate measurement matrix, high-
dimensional feature is reduced without losing information. 
Bernoulli random measurement matrix is adopted in this paper, 
which is given as 

    , ,

1 11
: ( , ) , ~

0.5 0.5

M N

i j i jR i j g g
M


 

    
 

          

The RIP of Bernoulli random measurement matrix is 
demonstrated in [11]. 

CS is capable of providing dimensional-controlled training 
samples for DBN though reducing dimension of dataset 
without losing feature information. By adopting Bernoulli 

random measurement matrix M , dimension of adjacency 

matrix can be reduced, which is given as
c

A A M  . Here, 

c
A means the feature of the compressive samples. The state 

space of samples inputting into DBN is {0, 1} or real number 

between zero and one. Thus, the elements in
c

A must be 

normalized according to dimension. We focused on effect of 
two kinds of normalization method on deep learning 
community structure. Remapping is a way to distinguish the 
various types of samples at maximum and map the feature of 
all samples between zero and one according to dimension. The 
features satisfied even distribution. Another way is identically 
distributed normalization. This method compresses the 
dimension between zero and one directly and keeps the 
original distribution. By applying two normalization methods, 
the modularity of community structure is improved. 

C. Train Deep Belief Network without Supervision 

Hilton proposed DBN in [7]. Compared with traditional 
neural networks, DBN has a lot of advantages. Firstly, it’s a 
kind of unsupervised learning algorithm which is suitable for 
processing big data without labels; secondly, the training 
algorithm of DBN, which is called Contrastive Divergence 
(CD), is more efficient than Back Propagation (BP) algorithm. 

As shown in Fig. 2, DBN is composed of stacked 
Restricted Boltzmann Machines (RBM) which is a generative 
stochastic neural network that can learn a probability 
distribution over its set of inputs. As its name implies, RBM is 
a variant of Boltzmann machine, with the restriction that the 
neurons must form a bipartite graph: it has a visible layer V, 
corresponding to features of the inputs, and a hidden layer H 
that are trained, and each connection in an RBM must connect 
a visible unit to a hidden unit. We define the structure of DBN 

as
1 2

[n ,n , ,n ]
k

 , where k  is the number of RBM layers, 
1

n is 

the number of input layer nodes, n (2 )
i

i k  is the number of 

hidden layers nodes, 
1 2 1

[ , , , ]
k

W W W


  means the transfer 

matrix between each layer. 

Each layer of DBN is unsupervised trained by CD 

algorithm. Training set is
c

A , 
1

n is equal with the dimension 

of
c

A . Input samples are mapped into different feature spaces 

by applying CD algorithm to keep feature information as 
much as possible. This training process is regarded as 
initializing weight parameters of multilayer BP neural network. 
Moreover, DBN overcomes local optimum and slow 
convergence speed via initializing. 
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Fig.2. Training procedure of DBN 
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D. Fine-tune the Model with Supervision 

After training DBN model, DBN build BP neural network 
for every class of community. BP neural network estimate 
samples whether belongs to the community via outputting zero 
or one. The procedure of the proposed fine-tune scheme is 
shown in Fig. 3. RBM only guarantee weight of own layer 
optimal mapping, however, it cannot achieve optimal for 
whole model. Because of this, model is fine-tuned though 
error back propagation. Though the training process, models N 
is generated. 
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Fig.3. Fine-tuning procedure of the model 

Recognition model of community structure is formed 
which can detect community via adjacency relationship. 
Recognition steps are as follows: First, vectors of adjacency 
matrix are compressed by utilizing random measurement 
matrix. Second, we input compressive feature vectors to the 
model. Finally, model recognizes which communities they are 
belong to. 

III. Experiments and Results 

The modularity [12] is used to judge the performance of 
the detected community structure. The modularity Q 
represents the strength of communities, which is given as 

                         

2

1 2

i i

N
c c

i

l d
Q

L L

  
   

   
                              

The performance of the two kinds of normalization 
methods is compared in this paper. Test data set is power

1
 

with 4914 nodes, and the sparsity of the data set is 0.054%. 
We extract first 1000 nodes to constitute the representative set. 
Community structure of representative set is detected via GN 
algorithm and we divide 33 communities, value of Q is 0.7232. 

Then, we set 3 layers of DBN, number of input layer is
1

n , 2 

                                                           
1
 http://www-personal.umich.edu/~mejn/netdata/ 

hidden layers are respectively 400 and 200. Moreover, number 
of classification layer nodes is 100. By compressing power 
dataset with Bernoulli random measurement matrix, we can 

obtain the feature dimension
1

n .  

Table 1 shows the result of two kinds of normalization 
methods under different samples feature dimension. As 
depicted in Table 1, remapping normalization has better 
performance on community detection compared with 

identically distributed normalization.
1

n 1000  , then 

Q=0.2914, when using remapping normalization. On the 

contrary, if we increase
1

n , the performance is poor and the 

best value is
1

n 800 . We can infer that higher feature 

dimension can only maintain original feature information with 
leading to more parameters. In addition, overfitting is 
generated because of the increasing parameters and fixed 
samples. Remapping adjusts feature distribution to improve 
discrimination of samples. It is proved that remapping is more 
suitable to detect community structure. 

TABLE I.  PERFORMANCES OF COMMUNITY STRUCTURE DETECTION 

UNDER TWO NORMALIZATION METHODS 

Normalization 

Methods 

Modularity Q of detected community structure 

1
n =200 400 600 800 1000 1200 

Remapping 0.0873 0.1711 0.2269 0.2821 0.2914 0.2227 

Identically 

distributed 
0.0045 0.0419 0.0477 0.0480 0.0240 0.0164 

 
The structure of DBN has significant influence on 

community detection. As influence measures, we adopt 
incremental hidden layers such as setting 1000 input nodes, 
100 classification layer nodes. The representative set power is 
compressed to 1000.  

First we test the performance of single hidden layer DBN. 
As showed in Table 2, the modularity of community structure 

is highest (Q=0.2761) since 1h   and
2

n 400 . Then, we set 

first hidden layer that of 
2

n 400  and increase the number of 

second hidden layer. The modularity of community structure 

is highest (Q=0.2914) since 2h   and
3

n 200 . However, 

we set second hidden layer that of 
3

n 200  and increase the 

number of third hidden layer. The modularity of community 

structure is highest (Q=0.2010) since 3h   and
4

n 200 . The 

performance degrade due to overfitting that generating more 
model parameters and requiring more samples for training. 

TABLE II.  EFFECT OF DIFFERENT DBN STRUCTURES TO THE 

PERFORMANCE OF COMMUNITY STRUCTURE DETECTION 

Number of 

nodes 

Modularity Q of detected community structure 

h=1 2 3 

200 0.2419 0.2914 0.2010 

400 0.2760 0.2502 0.1749 

600 0.2406 0.2195 0.1403 

800 0.2108 0.1870 0.1171 

1000 0.1913 0.1482 0.0864 

1200 0.1500 0.1207 0.0801 
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The experiment result shows that optimal DBN structure 
of power dataset is 1000 input nodes, 2 hidden layers which 
conclude 400 and 200 nodes respectively and 100 
classification layer nodes.  

Fig. 4 and Fig. 5 show the time consuming of GN and 
SymNMF on dataset blogcatalog with 10312 nodes, and 
sparsity of the dataset is 0.014%. We extract first K nodes as 
representative set to detect the community structure via GN 
and SymNMF respectively. The configuration of experimental 
computer is Intel I7 processer, 8G memory and Win7 64bit OS. 
The time consuming of GN and SymNMF algorithm increase 
rapidly and cannot detect large-scale network. The reason is 
that GN traverses different number of communities and 
calculates modularity of community. Besides, SymNMF 
expect to set the number of community manually. 
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Fig.4. Efficiency of GN algorithm 
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Fig.5. Efficiency of SymNMF algorithm 

The advantages of the proposed algorithm are indicated in 
Table 3. The feature dimension is compressed by Bernoulli 
random measurement matrix. Enabling DBN by setting it to 
1000 input nodes, 2 hidden layers are respectively 400 and 
200 and 100 classification layer nodes. As depicted in Table 3, 
for three real-world data sets, it spent the majority of time on 
detect community structure of representative set by GN. 
However, because of control the size of representative set, the 
algorithm running time do not change radically as the scale 
increases. With the increasing scale of network, the time of 
model training and recognition increases linearly. For example, 
we can still finish training and recognition tasks in the 
effective time when the scale is 80513. It is proved that the 
proposed method overcomes the limit of handling large-scale 
dataset. 

 

TABLE III.  EFFICIENCY OF PROPOSED ALGORITHM UNDER REAL-WORLD 

DATASETS  

Name of 

Real-world 

datasets 

Scale of 

datasets 

(Number 

of nodes) 

Time consumptions 

(seconds) 
Modularity Q 

Representative 

sets 

Universal 

sets 

Representative 

sets 

Universal 

sets 

power 4914 1915.1 116.5 0.7233 0.2914 

blogcatalog2 10312 1888.2 226.3 0.6874 0.2328 

flickr3 80513 1861.9 1652.9 0.7025 0.2077 

 

IV. Conclusion 

An effective community structure detection method was 
proposed, and its power verified by experiments. Compared to 
conventional community detection algorithms, the proposed 
algorithm produces improved performance of handling large-
scale social network data. The experiment results encourage 
the use of the proposed algorithm in many practical 
applications. The intention for future work is to extract 
community feature from unsupervised training results directly. 
This can avoid incomprehensiveness of the representative set 
which lead to insufficient supervised training. 
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