
Deployment and Performance Evaluation of Virtual Network based on OpenStack 

 

Shaoka Zhao
1,2

,Liyao Li
1
 

1.Mathematics and Computer 

 Science Department 

Fuqing Branch of Fujian 

 Normal University 

 Fuqing ,China 

zska@cernet.edu.cn, 

llywck@139.com 

 

Jiahai Yang
2
,Cong Xu

2
,Xiao Ling

2
 

2.Institute for Network Sciences and 

Cyberspace 

Tsinghua University 

 Beijing,China  

yang@cernet.edu.cn, 

xucong10@mails.tsinghua.edu.cn, 

lingxiao2011@yeah.net 

 

Shuxiao Huang
3,2

 

3.School of Software Engineering 

Beijing University of Posts and 

Telecommunications 

Beijing,China 

hsx0905@gmail.com

Abstract—In the context of the ever-developing virtual network, 

OpenStack officially launches its new network component-

Quantum, but the comparative performance between single-

host and multi-host deployment is yet unknown. The paper 

introduces detailed deployment strategies of single-host and 

multi-host after analyzing Quantum work mechanism and the 

construction polices of virtual networks. And then, we probe 

into the influence of various deployments on the reliability of 

network service, and conduct connectivity and performance 

tests on different deployment plans. Experiment results show 

that our virtual network multi-host deployment plan improves 

virtual network service reliability and efficiency compared 

with single-node node.  

Keywords-Quantum; Single-host; Multi-host; Agent Scheduling 

I.  INTRODUCTION 

With the booming of cloud platforms, the traditional 

network model is no longer able to meet the needs of cloud 

services in terms of scale, performance and automation. 

Therefore, the introduction of advanced network 

virtualization technologies is quite necessary as they can not 

only improve network utilization but also make the network 

more extensive and manageable. Virtual network allows 

user groups with different needs who are logically isolated 

from each other, to a certain degree, to access the same 

physical network. With network virtualization, a couple of 

closed user groups can be deployed on single physical 

infrastructure, and the entire network will maintain high-

security, extensibility, manageability and feasibility.  

At present, various platform software used to build cloud-

computing environment have emerged, for example, 

OpenStack, Eucalyptus, OpenNebula and CloudStack, etc. 

This paper chooses OpenStack, which has a great advantage 

in layered architecture, SOA, componentization, open 

sourcing, etc., as the experiment platform to build the virtual 

network.  
  In Essex, the earlier version of OpenStack, the network 

function of virtual machines was run by the compute 

component, Nova. In the latest versions of Folsom and 

Grizzly, however, the network component, Quantum, which 

possesses rich network APIs and enables users to create 

network topology through network and sub-network 

configuration, is separated from Nova. Quantum is highly 

flexible and practical.  
Currently, domestic and foreign research literature on 

Quantum, the OpenStack-based virtual network component, 

is relatively rare, and most of it centers on engineering 

document. Refs [1]-[5] describe background,   approaches 

and application status of the latest network virtualization 

technology. Ref [6] presents a measurement study to 

characterize the impact of virtualization on the networking 

performance. As an important component of OpenStack, 

Quantum could make network virtualization in cloud 

environment possible.  Refs [7] and [8] depict the various 

constituents of Quantum and how it works; refs [9] and [10] 

tell us the major usage scenarios and the simple and 

common deployment plans, however, they fail to provide us 

with composition scenarios which are more applicable and 

fully realize the deployment strategies based on various 

specific scenarios. Refs [11] and [12] put forward some 

improvement ideas to solve the problem of Single Point of 

Failure (SPoF), which is common in deployment. Refs [13] 

and [14] give some simple assumptions on future 

deployment, yet neither of them illustrates the highly 

available deployment for more complex scenarios or 

analyzes or evaluates the performance of the deployment. 

From the above analysis, it is easy to see that multi-

host virtualization routing is a completely new subject on 

the latest released version OpenStack Grizzly. In addition, 

the performance of the virtual network deployment is still 

uncertain, and there is hardly any further research which 

concentrates on this topic. Therefore, based on this novel 

platform, we will design a set of effective deployment 

scenarios, and conduct connectivity testing and performance 

evaluation at the same time. 

II. QUANTUM COMPONENT 

Quantum mainly includes Quantum-server, plugin and 

agent, which collaboratively provide network services. The 

Quantum-server first receives the API request and then 

passes it to the plugin for further processing. Later, 

according to the API request, the plugin conveys the 

International Workshop on Cloud Computing and Information Security (CCIS 2013)

© 2013. The authors - Published by Atlantis Press 18



message to the agents（L3 agent，DHCP agent，etc.）, 

which, in turn, pass it to the corresponding process for 

performance. Finally, the agent returns the request message.  

III. DEPLOYMENT STRATEGIES 

A. Single-host Deployment 

The emergence of Quantum has brought changes to both 
virtual networks and physical architecture. Figure 1 displays 
a typical single-host deployment plan, through which we see 
three types of physical nodes, namely, control node, network 
node and compute node. Communication and networking 
mainly involves Management network, Data network, 
External network and API network. 

 

Figure 1．Typical single-host deployment plan of OpenStack 

In real-world deployment, networks can be configured 
and merged according to different experimental environment. 
Regarding single-host deployment, this paper does not draw 
strict distinctions between management network and data 
network, as both of them are small and medium sized 
internal networks. Therefore, we merge the two types of 
networks into one.  

In the process of single-host deployment, there are 
generally several compute nodes and one network node. The 
proper functioning of network services—the core of cloud 
services—is of great significance, but single network nodes 
are prone to huge security and failure risks. On one hand, 
SPoF might occur in a certain node, resulting in the 
malfunction of the network services of the whole cloud 
platform as well as that of other services. On the other hand, 
if heavy network traffic exists on the cloud platform, single 
network nodes will be limited by bandwidth, becoming the 
bottleneck of QoS, or even break down.  

In order to improve the reliability of the network services 

on the platform of OpenStack, Multi-host deployment, 

which provides network services on all compute nodes to 

properly solve the problem of SPoF, is designed in our 

deployment plan. Such a framework could enhance the 

performance of network services, because it equally 

distributes network traffic on all compute nodes, which are 

mutually independent.  

B. Multi-host Deployment 

To improve the reliability of virtual networks, Multi-host 
deployment strategy of OpenStack is introduced. With a 
control node and three compute nodes (as shown in Table I), 
we first and foremost set the parameters of the network 
environment. The management network and data network 
are merged into one in the deployment process.   

TABLE I.   NETWORK CARD SETTING OF MULTI-HOST DEPLOYMENT 

node eth0 eth1 

control node 166.111.XXX. XXX 172.16.0.51 

compute node 01 166.111. XXX. XXX 172.16.0.52 

compute node 02 166.111.XXX. XXX 172.16.0.53 

compute node 03 166.111. XXX. XXX 172.16.0.54 

 
The architecture of Multi-host deployment in Grizzly is 

shown in Figure 2. During the process of Multi-host 
deployment, parameters should be configured to the 
configuration files of L3 and DHCP agents on each compute 
node:  

enable_multi_host = True; 

 

Figure 2．Multi-host deployment 

The remaining configuration is almost the same as that in 
Single-host deployment.  

In the deployment scenario of Figure 2, each compute 
node equals to a network node, and the L3 and DHCP agents, 
which are deployed on certain node, are only responsible for 
the network communication of the virtual machines in its 
own node. In this way, if the L3 or DHCP agent of a certain 
node fails, the influence will be limited to the virtual 
machines running on the specific node. Therefore, SPoF can 
be avoided to some extent, improving the quality of network 
services.  

Nevertheless, a new issue is raised: although the 
malfunction of a compute node does not affect other nodes, 
the virtual machines on the faulty node cannot communicate 
with the virtual machines on other nodes or external 
networks. Since several network nodes are allowed to coexist 
in one system, we could make efforts to design the agent 
scheduling mechanism on Multi-host deployment, unbinding 
the network agent service of a certain node from that node. 
In this way, the network service of one node could also reach 
others. The advantage of the modified mechanism is that 
even though all virtual machines on a single node fail to 

19



acquire network services because of network faults on the 
node, we can still access external networks with the services 
provided by other nodes. Therefore, the reliability of network 
services is further improved. 

C. Agent Scheduling Mechanism Design 

Agent scheduling mechanism on Multi-host deployment 

requires the cooperation of several agents. We can let a 

couple of such agents provide the same routing function, but 

only one of them serves as the default agent, with others 

being considered as coordinating agents. The default agent 

uses the IP of the subnet gateway as the port IP of the 

interface, while coordinating agents create new ports on the 

subnet as the interface port. This section mainly discusses a 

scheduling framework based on the above deployment plan. 

A network environment, which includes three networks 

Net1，Net2 and Net3 with the corresponding subnets of 

subnet1， subnet2 and subnet3, has been designed as in 

Figure 3. Net3 is an external network, while Net1 and Net2 

are internal networks of the tenants.  

 

Figure 3． Network environment setting 

Figure 4 shows a default scenario: there are three hosts 

altogether, namely, Host A, Host B, and Host C. The virtual 

machine VM_1_A which belongs to subnet1 runs on Host A, 

and the L3 agent in operation is the default agent of router1. 

The virtual machine VM_1_B of subnet1 and the virtual 

machineVM_2_B of subnet2 run on Host B. The DHCP 

agents of Host A and Host B are collaboratively responsible 

for Net1 and Net2. The L3 agent runs on Host C is the 

default agent of router2. In such a scenario, the L3 agent of 

Host A is in charge of the communication with the VMs of 

subnet1, and the L3 agent of Host C is responsible for the 

communication with the VMs of subnet2.   

 

Figure 4．Default scenario  

Figure 5 shows the scenario of cooperative routing: the 

L3 agent of Host C is responsible for router1 and router2, 

and the L3 agent of Host A is also in charge of router1, 

which means that the virtual machine VM_1_A of Host A is 

in coordination model. Therefore, the default 

communication of VM_1_A on Host A is the responsibility 

of the L3 agent of Host A; when L3 agent on Host A is out 

of work, VM_1_A will turn to L3 agent on Host C for 

routing service. Since there is no L3 agent running on Host 

B, the communication of the virtual machine on Host B is in 

the charge of the default router, namely, the L3 agent of 

Host C.  

 

Figure 5． Scenario of cooperative routing 

To make the virtual machine of Host B in coordination 

model like that of Host A, the L3 agent needs to be run on 

Host B, cooperatively taking charge of router1 and router2. 

Bellow is a scheduling framework of Multi-host deployment 

plan based on agent cooperation:  

 If each router acquires services from only one L3 
agent, which is fundamental in network 
communication of the virtual machines, it is the 
default router.  

 If the default router and the cooperating router 
coexist in a network, and one of them (either the 
default router or the cooperating router) is running 
on the virtual machine node, external network will 
be accessed through the router on the node 
preferentially. If no default router or cooperating 
router exists on the node of the network, external 
network will be accessed through the default router 
located on another physical server.  

In the modified Multi-host deployment plan, several L3 

agents (redundant L3) provide routing services for the same 

VMs so that the network communication of the VMs on the 

faulty node will not be affected when SPoF occurs. In this 

way, the reliability of network can be guaranteed. 

IV. EXPERIMENTS 

A. Test configuration 

After the single-host and multi-host deployments are 
completed, in order to check whether it’s successful or not, 
connectivity and performance tests of network services 
should be run on Quantum components based on the same 
use-case scenario. 

Figure 6 and Figure 7 show the single-host test scenario. 
In this scenario, each private network provides routers for the 
tenants, which means every tenant has his (her) own private 
network and router. Each having their own routers, namely, 
router_1 and router_2, the two tenants of pro_1 and pro_2 
are connected to the external network, with the port IP of 
166.111.xxx.4 and 166.111.xxx.5. Tenant pro_1 possesses 

20



one network called net_1, with the segment of 10.10.10.0/24. 
Tenant pro_2 has two networks, namely, net_1 and net_2, 
the segments of which are 10.10.20.0/24 and 10.10.30.0/24 
respectively. Both of the two networks are connected to the 
tenant’s own router—router_2. Four virtual machines are 
running in the networks of the two tenants, among which 
virtual machines vm_1 and vm_2 of pro_1 belongs to the 
same segment, while virtual machines vm_1 and vm_4 of 
pro_2 belongs to different segments.  

Deployment architectures of Multi-host and Single-host 

are similar, except that the route of Multi-host is selected 

under the designed scheduling mechanism from a segment 

selection pool of External Network. Meanwhile, the virtual 

network agents within each host (Figure 8) finish work in 

accordance with our scheduling mechanism designed before. 

 

Figure 6． Single-host deployment scenario(1) 

 

Figure 7． Single-host deployment scenario(2) 

 
Figure 8． Multi-host deployment scenario 

B. Test Result and Analysis  

Below are the tests on network connectivity within 
different VMs on the same compute node, between VMs on 
different computing nodes, as well as VMs in the cloud and 
external hosts outside the cloud based on single-host and 
multi-host deployment. 

In testing network connectivity within different VMs on 
the same compute node, we use vm_1 to ping the address of 
vm_2 —10.10.10.4 to find out whether vm_1 and vm_2 of 
pro_1 could communicate normally. It is very easy to see the 

result is positive. When testing network connectivity 
between VMs on different computing nodes, an external IP 
address should be allocated to the virtual machine in the 
internal network, as the tenants have set up their own 
isolated internal networks through routers. After allocating 
the external IP address to vm_4, we use vm_2 on node 01 to 
ping the external IP address of vm_4 on node 03, and the 
result is also positive. In testing network connectivity 
between VMs in the cloud and external hosts outside the 
cloud, we use vm_2 on node 01 to ping external IP address, 
and the result is satisfactory.  

From the above connectivity tests, it’s not hard to 
conclude that the deployment of the virtual network of 
OpenStack has gained initial success.  

Next is for other performance tests. Based on design 

scenarios of Figure 6 to Figure 8, we make the estimation of 

virtual network time delay and packet loss rate under the 

way of two deployment modes, i. e., the Single-host and 

Multi-host. The experiment uses a software package D-ITG 

[15], adopting different approaches to select the sender and 

recipient for sending packets, meanwhile gradually increase 

the number of packages to simulate large file transfers. We 

consider the following three test cases: 1) between different 

VMs on the same compute node, 2) between VMs on 

different computing nodes, 3) VMs in the cloud and external 

hosts outside the cloud. Just as the connectivity test, for the 

first case, we conduct the performance test between vm_1 

and vm_2 in tenant pro_1. For test case 2, we conduct 

performance test between vm_1 of pro_1 and the vm_1 and 

vm_4 of pro_2 simultaneously. The third test uses vm_1 of 

pro_1 and vm_1 of pro_2 in the cloud in parallel to send 

packets to the external host, and then the measurement 

results plotted in a line graph showing comparison display. 

The horizontal axis of the plot stands for test file sizes, and 

the vertical axis represents the time delay (Figure 9) and 

packet loss rate (Figure 10). 

 

Figure 9．Time delay curve 

 

Figure 10．Package loss rate curve 

21



In Figure 9, it is easy to see, as the file size sent increases, 

the time delay on the whole shows a gradual increasing 

trend. As in the same node, communication between 

different VMs is with no involvement of agents, the 

difference between single host and multi-host deployment 

delays are not significant.  

While in multi-host deployment, if the sent package is 

very small, the time delay between different VMs located in 

different compute nodes inside the cloud is roughly twice 

that between the cloud VMs and external hosts.  The reason 

is that the packages go through twice the number of agents 

during the transmission between cloud VMs compared with 

that between cloud VMs and external hosts (the external 

hosts are located closely to the router).  

With the communication increases, between the virtual 

machines, cloud virtual machines and external host of 

different computing nodes, owing to the test of parallel 

communication, there is competition for resources and agent 

scheduling. Thus Multi-host deployment manner highlights 

the advantages, which is specifically showed by the 

performance of its slower growth trend curve. Overall, when 

in Multi-host scenario, every time the communication 

volume increases 1,000 times, the three scenarios’ (between 

different virtual machines of the same node, between virtual 

machines of different computing nodes, between virtual 

machines in the cloud and hosts outside the cloud) growth 

of time delay is about 5 times, 12 times and 16 times, 

respectively. Figure 10 gives a comprehensive reflection 

that the packet loss rate and the time delay curve trend are 

roughly the same. Experiments show that Multi-host 

deployment takes certain advantages than Single-host on the 

whole. 

V. CONCLUSION 

This paper introduces the single-host and multi-host 

deployment of OpenStack, qualitatively analyzes the 

reliability of network services. Taking advantage of the new 

features of Quantum component, we emphasize on Multi-

host deployment and design a coordination mode of agents. 

According to the connectivity and performance evaluation 

results, our deployment plan avoids SPoF and improves the 

reliabilities of virtual network services. 

Two problems remain to be solved in the next phase 

regarding to the deployment plan in this paper: first, how to 

figure out the exact number of redundant routers. Indeed, 

the L3 agent of each compute node could take charge of all 

routers, but such a deployment is no doubt ineffective and 

wasteful, especially in large scale cloud networks. Second, 

how to design a more effective agent scheduling algorithm 

with the purpose of realizing rational allocation of resources 

and effective implementation of the highly-reliable 

deployment plan, which are composed of part of our future 

works.  

 

ACKNOWLEDGMENT 

We would like to thank anonymous reviewers for 

valuable comments. This research is supported by Tsinghua 

University-Cisco Joint Laboratory Research Fund Project, 

Ministry of Education - China Mobile Research Fund 

(No.MCM20123041) ， Fujian Provincial Department of 

Education Science and Technology Project (No.JA13343), 

Fuqing Branch of Fujian Normal University Research Fund 

(No.KY2013001). 

REFERENCES 

[1] Gregor Schaffrath,Christoph Werle,Panagiotis Papadimitriou, et 
al,―Network virtualization architecture: proposal and initial 
prototype,‖ ACM SIGCOMM Conference, Barcelona, Spain, pp. 63-
72,  August 2009. 

[2] N.M.Chowdhury,and Raouf Boutaba,―A survey of network 
virtualization,‖Computer Networks, vol. 54, no. 5, pp. 862-876, 
April  2010. 

[3] Nicira Inc,―Nicira Network Virtualization 
Platform(NVP) ,‖http://nicira.com/en/network-virtualization-platform, 
2012. 

[4]     Piotr Rygielski,and  Samuel Kounev,―Network Virtualization for 
QoS-Aware Resource Management in Cloud Data Centers,‖PIK ，
Volume 36, Issue 1, pp. 55–64, Feb.2013. 

[5]    Rafael Esteves, Lisandro Zambenedetti Granville, and Raouf Boutaba, 
―On the Management of Virtual Networks,‖IEEE Communications 
Magazine.to appear. 

[6]    Wang G, Ng T S E,―The impact of virtualization on network 
performance of amazon EC2 data center,‖INFOCOM, 2010 
Proceedings IEEE. IEEE, pp. 1-9. March 2010. 

[7]      Dan Wendlandt,―Introduction to OpenStack Quantum for Cloud 
Operators,‖Folsom Conference, April. 19, 2012. 

[8]      Salvatore Orlando,―Quantum: Virtual Networks for OpenStack,‖ 
QCon,May 2012. 

[9]      OpenStack,―OpenStack Quantum Administration 
Guide,‖http://docs.openstack.org/trunk/openstack-network/admin/bk-
quantum-admin-guide-trunk.pdf, April 2012. 

[10]    Shake Chen,―Ubuntu12.04 OpenStack Folsom installation based on    

VLAN,‖ http://www.chenshake.com/openstack-folsom-install-guide- 

vlan-mode,‖ November 2012. 

[11]   Quantum multi-host. 

https://docs.google.com/document/d/1Y41g- 
POd3DLmtFnD6JfKFDvZJikbUvsL0wIi8LFD35U/edit,2013. 

[12]   Quantum scheduler, 

https://docs.google.com/document/d/1TJlW0_tMpeENA_ia38fvRu7i
oKRt9fsWXBjivwd1mMw/edit#heading=h.v5d86yy8opif, 2013. 

[13]   Yongsheng Gong,―Architecture of Quantum Grizzly Release,‖ 

https://docs.google.com/viewer?a=v&q=cache:tU30- 
8LnNbwJ:www.valleytalk.org/wp-
content/uploads/2012/12/quantum-technical-archicture.ppt+&hl=zh-
CN&gl=cn&pid=bl&srcid=ADGEESg7xw0r-
V1WDu8pcp4xIkNTFGPEBKWAWOVOUEgp28S5TYHCvFZZ5N
hD76P6x2ejHFO7kIllTN-
ZEWn3hmKeWLK1gtk7LRIFX0U4U5d1qC8hoaYCAvceY7E6Xvp
qRuUTCr8QVX5j&sig=AHIEtbRjIoOPWr7n-
WlDHZN9P2PTAy0dwQ, 2013. 

[14]    Kirill Ishanov,―OpenStack Super Bootcamp,‖OpenStack Summit,   
San Diego, Oct.15-18,2012. 

[15]    D-ITG :Distributed Internet Traffic Generator – v. 2.3 Reference 
Manual(last update),http://www.grid.unina.it/software/ITG, April, 
2004.

 

22

mailto:piotr.rygielski@kit.edu
mailto:kounev@kit.edu



