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Abstract—In this paper, we propose CDS-MR , a MapReduce 

deep service analysis system based on Hive/Hadoop 

frameworks. Normally, the job of the switch is to transmit data. 

There is a tendency to put more capability into the switch, such 

as retain or query pass by data. Thus we definitely need to 

think about what can be kept in working storage and how to 

analysis it. Obviously, the ordinary database cannot handle the 

massive dataset and complex ad-hoc query. MapReduce is a 

popular and widely used fine grain parallel runtime, which is 

developed for high performance processing of large scale 

dataset.  
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Workflow 

I.  INTRODUCTION 

Many distributed computing models have been 
developed for high performance processing of large scale 
scientific data. MapReduce is a popular parallel 
programming model proposed by Google to support large-
scale data processing. Hadoop is an open source 
implementation of MapReduce with a distributed file system 
(HDFS)

 1,2
.  

Each MapReduce job takes a set of key/value pairs as 
input, and produces a set of key/value pairs. The 
computation of MapReduce jobs is split into 2 phases: map 
and reduce

3
.  

In map phase, map function takes an input key/value 
pair, read the data accordingly from HDFS, and produces a 
set of intermediate key/value pairs

4
. In reduce phase, each 

reduce operation accepts an intermediate key and all values 
associate with that key. It merges these values to form a 
possibly smaller set of values, emits key/value pairs of the 
final output, and writes the final output to HDFS

5
.  

Hive in CDS-MR provides a mechanism to project 
structure onto this data and query the data using a SQL-like 
language called HiveQL

6
. It has traditional SQL constructs 

like joins, group bys, where, select, from clauses, and from 
clause subqueries.  

It tries to convert SQL commands into a set of 
MapReduce jobs. Apart from the normal SQL clauses, it has 
a bunch of other extensions, like the ability to specify 
custom mapper and reducer scripts in the query itself, the 
ability to insert into multiple tables, partitions, HDFS, or 
local files while doing a single scan of the data. 

 

 

II.  SYSTEM ANALYSIS 

A.   Switch and Its Data  

The current job of the switch in CDR is to transmit data 

and not to retain it or query it. But for deep service analysis, 

we need to copy, retain and analysis the stream data passed 

by the switch.  

These streams have the following abilities. 
 Increased rapidly, big data: Each produces 700M every 5 

minutes, and daily up to 1.5 terabytes arriving for each 
province. Almost 1  petabyte for 31 province each week. 

Write once, read many times: The deep stream analysis is 
focused on the global feature and mainly focused on batch 
access for decision making. Seldom update and insert 
operations in it. 

Dynamic schema, low integrity: Since different service 
streams enter the system. Each stream can provide elements 
at its own schedule; they need not have the same data rates or 
data types, and the time between elements of one stream need 
not be uniform.  

Not fit for RDBMS: The fact that the rate of arrival of 
stream elements is not under the control of the system 
distinguishes stream processing from the processing of data 
that goes on within a database-management system. 

Thus we definitely need to think about how and what can 
be kept in working storage and how to analysis them. 

B. Data Analysis 

Applications often require more resources than are 
available on an inexpensive machine. The need for efficient 
and effective models of parallel computing is clear due to the 
existence of extremely large datasets which cannot be 
processed without using multiple computers.  

There are two interrelated but distinct classes of uses for 
analyzing data:  

1)Producing daily and hourly summaries over large 
amounts of data. These summaries are used for a number of 
different purposes within the company. Reports based on 
these summaries are used by engineering and non-
engineering functional teams to drive product decisions. 
These summaries include reports such as  amount of 
send/receive packages for specific applications.  

2)Running ad-hoc jobs over CDR data. These analyses 
help answer questions from 3G App providers and executive 
team. It could be examined only under special circumstances 
using time-consuming retrieval processes. There are also lots 
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of Hive tables, into which summaries or parts of streams may 
be placed, and which can be used for answering queries.  

Both the statistic and ad-hoc queries can rely on sampling 
data, depending on how fast we need to process queries. 
Sometimes it is enough to get the decision information just 
based on the sampling data. Usually it is not necessary to 
store all the stream data as for sufficiently limited capacity.  

III.  PROTOTYPE DESIGN 

A.  Data Architecture 

The basic components of our architecture and the data 
flow within these components are shown in  Figure 1.   

The following components are used in processing data: 
HDFS 
A large fraction of this CDR data is copied into one 

central HDFS instance. Data from the switching stream data 
is continuously replicated to the HDFS cluster by copier jobs. 
The CDR devices are mounted on the Hadoop tier and the 
copier processes run as map-only jobs on the Hadoop cluster. 
This makes it easy to scale the copier processes and makes 
them fault-resilient. Currently, we copy over 1.5 TB per day 
from CDR to HDFS in this manner. 

Hive/Hadoop 
We use Hive to build a data warehouse over all the data 

collected in HDFS. Files in HDFS, including user data from 
CDR and statistic data from the Hive, are made available as 
tables with logical partitions. A SQL-like query language 
provided by Hive is used in conjunction with MapReduce to 
create/publish a variety of summaries and reports, as well as 
to perform historical analysis over these tables. 

Tools 
Browser-based interfaces built on top of Hive allow users 

to compose and launch Hive queries (which in turn launch 
MapReduce jobs) using just a few mouse clicks 

 

 
Figure 1  Architecture of  CDR processing  

B.  Hadoop Cluster  

Hadoop cluster adopts master-slave architecture. The 
master node runs a namenode, a secondary namenode and a 
job tracker. The namenode is mainly used for HDFS for 
hosting the file system index. The secondary namenode can 
generate snapshots of the namenode's memory structures, 
thus preventing file system corruption and reducing loss of 

data; the job tracker allocates work to the task tracker nearest 
to the data with an available slot.  

The slave node runs a datanode and a task tracker: 
datanode contains blocks of data inside HDFS where 
multiple datanodes can serve up distributed data over 
network; task tracker will spawn java processes as workers to 
execute the work received from job tracker. For reliability, 
file data is replicated to multiple storage nodes

7
. 

There are two types of nodes that control the job 
execution process: a jobtracker and a number of tasktrackers. 
The jobtracker coordinates all the jobs run on the system by 
scheduling tasks to run on tasktrackers. Tasktrackers run 
tasks and send progress reports to the jobtracker, which keeps 
a record of the overall progress of each job

8
. If a task fails, 

the jobtracker can reschedule it on a different tasktracker
9
. 

Hadoop divides the input to a MapReduce job into fixed-
size pieces called input splits, or just splits. Hadoop creates 
one map task for each split, which runs the user-defined map 
function for each record in the split. 

Having many splits means the time taken to process each 
split is small compared to the time to process the whole input. 

The HDFS that underlies MapReduce provides efficient 
and reliable distributed data storage required for applications 
involving large datasets. 

The basic function of the MapReduce model is to iterate 
over the input, compute key/value pairs from each part of the 
input, group all intermediate values by key, then iterate over 
the resulting groups and finally reduce each group. The 
model efficiently supports parallelism. 

C.  Analysis over Hive  

Hive is a data warehouse infrastructure built on top of 
Hadoop and serves as the predominant tool that is used to 
query the data stored in Hadoop at CDS-MR. 

The natural consequence of these requirements was a 
system that could model data as tables and partitions and that 
could also provide a SQL-like language for query and 
analysis. Also essential was the ability to plug in customized 
MapReduce programs written in the programming language 
of the user’s choice into the query.  

Additionally, the ability provided by Hive in terms of 
expressing data pipelines in SQL can and has provided the 
much needed flexibility in putting these pipelines together in 
an easy and expedient manner.  

This is especially useful for organizations and products 
that are still evolving and growing. Many of the operations 
needed in processing data pipelines are the well-understood 
SQL operations like join, group by, and distinct aggregations. 
With Hive’s ability to convert SQL into a series of Hadoop 
MapReduce jobs, it becomes fairly easy to create and 
maintain these pipelines.  

In one of the optimizations that is being added to Hive, 
the query can be converted into a sequence of Hadoop 
MapReduce jobs that are able to scale with data skew. 
Essentially, the join is converted into one MapReduce job .  
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IV.  EXPERIMENT 

To address the challenges faced in designing and setup 

large MapReduce, we have implemented a MapReduce 

prototype and do some fundamental experiment.  

The sentence chunking application consists of five steps: 

1) Setting up a Hadoop Cluster, 2) Importing the CDR file to 

HDFS, 3) Constructing a MapReduce Model, 4) Running the 

processing and get Results, 5)Providing a statistic and Ad-

hoc query tool for user.   

We will discuss these steps and Query tool as below.  

A.  Hadoop Cluster 

Firstly, we will explain how to set up Hadoop to run on a 

cluster of machines. Our experiment Hadoop environment is 

designed to run on commodity hardware. That means that 

you are not tied to expensive, proprietary offerings from a 

single vendor; rather, you can choose standardized, 

commonly available hardware from any of a large range of 

vendors to build your cluster. 

We have 1 PC server as Namenode and 20 PC as data 

node to construct commodity cluster. The salient point is 

that the aggregate band-width between nodes on the same 

sub-switch is much greater than that between nodes on 

different switch. While the hardware specification for your 

cluster will assuredly be different, Hadoop is designed to use 

multiple cores and disks, so it will be able to take full 

advantage of more powerful hardware  

In this case, we will write a program that mines CDR 

data. The 1.5 terabyte data is produced by a provincial CDS 

data center, which is a good candidate for analysis with 

MapReduce, since it is semi-structured and record-oriented. 

The data is stored using a line-oriented ASCII format, in 

which each line is a record. The format supports a rich set of 

3G service elements, many of which are optional or with 

variable data lengths. For simplicity, we shall focus on the 

basic elements, such as Phone Number, IP Address which 

are always present and are of fixed width. 

Data files are organized by date center number and date. 

There is a directory for each day, which contains a  file with 

its readings from that center.  

To visualize the detail record, consider the following 

sample lines of input data (some unused columns have been 

dropped to fit the page): 
...QQTC20120613112720120613113210140...117710229... 

...SNTP20120613113120120613113210140...11771027... 

...HTTP20120613112720120613113210140...117710221... 

...MRDR20120613112920120613113210141...117710217...  

B.  MapReduce Model 

MapReduce works by breaking the processing into two 

phases: the map phase and the reduce phase. Each phase has 

key-value pairs as input and output, the types of which may 

be chosen by the programmer. The programmer also 

specifies two functions: the map function and the reduce 

function.  

The input to our map phase is the raw CDR data. We 

choose a text input format that gives us each line in the 

dataset as a text value. The key is the offset of the beginning 

of the line from the beginning of the file, but as we have no 

need for this, we ignore it. 

Our map function is focused on pulling out the necessary 

parameter as: application class, start Time, source IP 

address, phone number, send package, receive package, etc. 

Since these are the fields we are interested in.  

In this case, the map function is just a data preparation 

phase, setting up the data in such a way that the reducer 

function can do its work on it: finding and counting the 

necessary data for deep service analysis. The map function is 

also a good place to drop bad records: here we filter out data 

that are missing, suspect, or erroneous. 

These lines are presented to the map function as the key-

value pairs: 
(0,     QQTC201206131127... 014088182138...162518dial1...) 

(128, SNTP201206131212... 028028182138...152513ip1...) 

(256, HTTP201206131317... 016088182137...127521dial1...) 

... 

The keys are the line offsets within the file, which we 

ignore in our map function. The map function merely 

extracts the necessary data segment and emits them as its 

output. For example, the application class and send package 

can be interpreted as: 
(QQTC, 21) 

 (SNTP, 17) 

 (HTTP, 11) 

...  

The output from the map function is processed by the 

MapReduce framework before being sent to the reduce 

function. This processing sorts and groups the key-value 

pairs by key. So, continuing the example, our reduce 

function sees the following input: 
(QQTC, [21, 16 ,22...]) 

(SNTP, [17, 10...]) 

(HTTP,[11, 6...]) 

Each application class with a list of all its sending 

package. All the reduce function has to do now is iterate 

through the list and pick up the sum for each reading: 
(QQTC, 4621)  

(SNTP, 1022)  

(HTTP, 502) 

This is the final output: the total send package in each 

application class at a time 

V.  STATISTIC AND QUERY 

A.  Data analysis  

Usually 3G carrier want to know statistic data such as 
which application is mostly used by the smart phone user at 
a time,  daily or hourly reports for send and/or receive 
packages for specific app class and/or  IP address . Since the 
bulk of the data(because the total data for a popular 3G 
dataset is huge), analysis tasks cannot be  performed by 
RDBMS.  

30



Fortunately, the stream datasets in HDFS are structured 
and could be easily partitioned. Hive and Hadoop can be 
easily used for such data analysis and statistic applications.  

Our experiment is a typical application in the online 
CDR data analysis. All of these are easily expressible in 
Hive using a couple of SQL queries (that would, in turn, 
generate multiple Hadoop jobs).  

Here different data, such as application class and send 
and/or receive packages, can be structured as tables in Hive. 
Following is the detail steps. 

(1). Create Hive table； 

(2). Load data 
(3).Group by application class for send packages. 
(4). List Result as, 
    ... 
Hive is proved as easily useful for assembling statistic 

data and then feeding the same into a data analysis engine.  
From this statistic info in Hive table, the daily or hourly 

reports for send and receive package can be produced 
according to application class and IP address, etc.  

If only an estimate were required, the same queries can 
be run for a sample set of the users using sampling 
functionality natively supported by Hive.  

Then, the standard statistic info can also be deduced 
under this framework. This would involve sampling CDR 
data, grouping it by time and then finding the number of data 
model at different time points via a custom reduce script.  

B. Ad-hoc analysis and product feedback 

Although Hive and Hadoop are batch processing systems 
that cannot serve the computed data with the same latency as 
a usual RDBMS, they are to be able to support ad-hoc 
analysis and product feedback solutions.  

For example, some 3G Application(e.g. QQ) provider 
usually makes product changes, and it is typical for product 
managers to understand the impact of a new feature, based 
on user engagement as well as on the user behavior.  

The product team may even wish to do a deeper analysis 
on what is the impact of the change based on gender and 
age. A lot of this type of analysis could be done with 
Hadoop by using Hive and regular SQL.  

The measurement of usage can be easily expressed as a 
join of the user information(age or/and gender) for the 
particular related feature in CDR. It can be used to compute 
the effect of 3G app changes on different age or/and gender.  

In our experiment, the QQ provider need to do ad-hoc 
query for packages sent by male at a time. A HiveQL 
OuterJoin can be used to do this as shown in Figure 2. 
Assume the CDR_Table provides the CDR data, and 
User_Table contains gender info as User_Table (PhoneNo 
string , Name string , gender tinyint). 

Data in User_Table  is listed as,   
 13800127XXX Tom 1 

  13701166XXX Alice 0 
  13911245XXX John 1 
    ...  

Some of this analysis needs the use of custom map and 
reduce scripts in conjunction with the Hive SQL, and that is 
also easy to plug into a Hive query.  

 

 

Figure 2 Outer Join for ad-hoc table  

VI.  CONCLUSIONS 

In this paper we proposed and implemented a new 
distributed workflow system CDS-MR. It is a MapReduce 
systems based on composition of Hadoop and Hive. The 
architecture of CDS-MR is described. CDS-MR is extended 
to support both statistic and ad-hoc queries. In our 
experiments, we demonstrated that the CDS-MR is fit for 
deep service analysis, which explains the motivation for our 
CDS-MR. 
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