
Research of a MapReduce Communication Data Stream Processing Model

Wenchuan Yang

School of Computer, Beijing University of Posts and

Telecommunication, Beijing,China,100876

Century College, BUPT, Beijing,China,102613

e-mail: yangwenchuan@bupt.edu.cn

Bei Jia

Xi'an Communication Institute,

Shaanxi, Xi'an, China, 710106

e-mail: jiabeihn@gmail.com

Abstract—In this paper, we propose CDS-MR , a MapReduce

deep service analysis system based on Hive/Hadoop

frameworks. Normally, the job of the switch is to transmit data.

There is a tendency to put more capability into the switch, such

as retain or query pass by data. Thus we definitely need to

think about what can be kept in working storage and how to

analysis it. Obviously, the ordinary database cannot handle the

massive dataset and complex ad-hoc query. MapReduce is a

popular and widely used fine grain parallel runtime, which is

developed for high performance processing of large scale

dataset.

Keywords-Cloud Computing; Hadoop; Hive; MapReduce;

Workflow

I. INTRODUCTION

Many distributed computing models have been
developed for high performance processing of large scale
scientific data. MapReduce is a popular parallel
programming model proposed by Google to support large-
scale data processing. Hadoop is an open source
implementation of MapReduce with a distributed file system
(HDFS)

 1,2
.

Each MapReduce job takes a set of key/value pairs as
input, and produces a set of key/value pairs. The
computation of MapReduce jobs is split into 2 phases: map
and reduce

3
.

In map phase, map function takes an input key/value
pair, read the data accordingly from HDFS, and produces a
set of intermediate key/value pairs

4
. In reduce phase, each

reduce operation accepts an intermediate key and all values
associate with that key. It merges these values to form a
possibly smaller set of values, emits key/value pairs of the
final output, and writes the final output to HDFS

5
.

Hive in CDS-MR provides a mechanism to project
structure onto this data and query the data using a SQL-like
language called HiveQL

6
. It has traditional SQL constructs

like joins, group bys, where, select, from clauses, and from
clause subqueries.

It tries to convert SQL commands into a set of
MapReduce jobs. Apart from the normal SQL clauses, it has
a bunch of other extensions, like the ability to specify
custom mapper and reducer scripts in the query itself, the
ability to insert into multiple tables, partitions, HDFS, or
local files while doing a single scan of the data.

II. SYSTEM ANALYSIS

A. Switch and Its Data

The current job of the switch in CDR is to transmit data

and not to retain it or query it. But for deep service analysis,

we need to copy, retain and analysis the stream data passed

by the switch.

These streams have the following abilities.
 Increased rapidly, big data: Each produces 700M every 5

minutes, and daily up to 1.5 terabytes arriving for each
province. Almost 1 petabyte for 31 province each week.

Write once, read many times: The deep stream analysis is
focused on the global feature and mainly focused on batch
access for decision making. Seldom update and insert
operations in it.

Dynamic schema, low integrity: Since different service
streams enter the system. Each stream can provide elements
at its own schedule; they need not have the same data rates or
data types, and the time between elements of one stream need
not be uniform.

Not fit for RDBMS: The fact that the rate of arrival of
stream elements is not under the control of the system
distinguishes stream processing from the processing of data
that goes on within a database-management system.

Thus we definitely need to think about how and what can
be kept in working storage and how to analysis them.

B. Data Analysis

Applications often require more resources than are
available on an inexpensive machine. The need for efficient
and effective models of parallel computing is clear due to the
existence of extremely large datasets which cannot be
processed without using multiple computers.

There are two interrelated but distinct classes of uses for
analyzing data:

1)Producing daily and hourly summaries over large
amounts of data. These summaries are used for a number of
different purposes within the company. Reports based on
these summaries are used by engineering and non-
engineering functional teams to drive product decisions.
These summaries include reports such as amount of
send/receive packages for specific applications.

2)Running ad-hoc jobs over CDR data. These analyses
help answer questions from 3G App providers and executive
team. It could be examined only under special circumstances
using time-consuming retrieval processes. There are also lots

International Workshop on Cloud Computing and Information Security (CCIS 2013)

© 2013. The authors - Published by Atlantis Press 28

of Hive tables, into which summaries or parts of streams may
be placed, and which can be used for answering queries.

Both the statistic and ad-hoc queries can rely on sampling
data, depending on how fast we need to process queries.
Sometimes it is enough to get the decision information just
based on the sampling data. Usually it is not necessary to
store all the stream data as for sufficiently limited capacity.

III. PROTOTYPE DESIGN

A. Data Architecture

The basic components of our architecture and the data
flow within these components are shown in Figure 1.

The following components are used in processing data:
HDFS
A large fraction of this CDR data is copied into one

central HDFS instance. Data from the switching stream data
is continuously replicated to the HDFS cluster by copier jobs.
The CDR devices are mounted on the Hadoop tier and the
copier processes run as map-only jobs on the Hadoop cluster.
This makes it easy to scale the copier processes and makes
them fault-resilient. Currently, we copy over 1.5 TB per day
from CDR to HDFS in this manner.

Hive/Hadoop
We use Hive to build a data warehouse over all the data

collected in HDFS. Files in HDFS, including user data from
CDR and statistic data from the Hive, are made available as
tables with logical partitions. A SQL-like query language
provided by Hive is used in conjunction with MapReduce to
create/publish a variety of summaries and reports, as well as
to perform historical analysis over these tables.

Tools
Browser-based interfaces built on top of Hive allow users

to compose and launch Hive queries (which in turn launch
MapReduce jobs) using just a few mouse clicks

Figure 1 Architecture of CDR processing

B. Hadoop Cluster

Hadoop cluster adopts master-slave architecture. The
master node runs a namenode, a secondary namenode and a
job tracker. The namenode is mainly used for HDFS for
hosting the file system index. The secondary namenode can
generate snapshots of the namenode's memory structures,
thus preventing file system corruption and reducing loss of

data; the job tracker allocates work to the task tracker nearest
to the data with an available slot.

The slave node runs a datanode and a task tracker:
datanode contains blocks of data inside HDFS where
multiple datanodes can serve up distributed data over
network; task tracker will spawn java processes as workers to
execute the work received from job tracker. For reliability,
file data is replicated to multiple storage nodes

7
.

There are two types of nodes that control the job
execution process: a jobtracker and a number of tasktrackers.
The jobtracker coordinates all the jobs run on the system by
scheduling tasks to run on tasktrackers. Tasktrackers run
tasks and send progress reports to the jobtracker, which keeps
a record of the overall progress of each job

8
. If a task fails,

the jobtracker can reschedule it on a different tasktracker
9
.

Hadoop divides the input to a MapReduce job into fixed-
size pieces called input splits, or just splits. Hadoop creates
one map task for each split, which runs the user-defined map
function for each record in the split.

Having many splits means the time taken to process each
split is small compared to the time to process the whole input.

The HDFS that underlies MapReduce provides efficient
and reliable distributed data storage required for applications
involving large datasets.

The basic function of the MapReduce model is to iterate
over the input, compute key/value pairs from each part of the
input, group all intermediate values by key, then iterate over
the resulting groups and finally reduce each group. The
model efficiently supports parallelism.

C. Analysis over Hive

Hive is a data warehouse infrastructure built on top of
Hadoop and serves as the predominant tool that is used to
query the data stored in Hadoop at CDS-MR.

The natural consequence of these requirements was a
system that could model data as tables and partitions and that
could also provide a SQL-like language for query and
analysis. Also essential was the ability to plug in customized
MapReduce programs written in the programming language
of the user’s choice into the query.

Additionally, the ability provided by Hive in terms of
expressing data pipelines in SQL can and has provided the
much needed flexibility in putting these pipelines together in
an easy and expedient manner.

This is especially useful for organizations and products
that are still evolving and growing. Many of the operations
needed in processing data pipelines are the well-understood
SQL operations like join, group by, and distinct aggregations.
With Hive’s ability to convert SQL into a series of Hadoop
MapReduce jobs, it becomes fairly easy to create and
maintain these pipelines.

In one of the optimizations that is being added to Hive,
the query can be converted into a sequence of Hadoop
MapReduce jobs that are able to scale with data skew.
Essentially, the join is converted into one MapReduce job .

29

IV. EXPERIMENT

To address the challenges faced in designing and setup

large MapReduce, we have implemented a MapReduce

prototype and do some fundamental experiment.

The sentence chunking application consists of five steps:

1) Setting up a Hadoop Cluster, 2) Importing the CDR file to

HDFS, 3) Constructing a MapReduce Model, 4) Running the

processing and get Results, 5)Providing a statistic and Ad-

hoc query tool for user.

We will discuss these steps and Query tool as below.

A. Hadoop Cluster

Firstly, we will explain how to set up Hadoop to run on a

cluster of machines. Our experiment Hadoop environment is

designed to run on commodity hardware. That means that

you are not tied to expensive, proprietary offerings from a

single vendor; rather, you can choose standardized,

commonly available hardware from any of a large range of

vendors to build your cluster.

We have 1 PC server as Namenode and 20 PC as data

node to construct commodity cluster. The salient point is

that the aggregate band-width between nodes on the same

sub-switch is much greater than that between nodes on

different switch. While the hardware specification for your

cluster will assuredly be different, Hadoop is designed to use

multiple cores and disks, so it will be able to take full

advantage of more powerful hardware

In this case, we will write a program that mines CDR

data. The 1.5 terabyte data is produced by a provincial CDS

data center, which is a good candidate for analysis with

MapReduce, since it is semi-structured and record-oriented.

The data is stored using a line-oriented ASCII format, in

which each line is a record. The format supports a rich set of

3G service elements, many of which are optional or with

variable data lengths. For simplicity, we shall focus on the

basic elements, such as Phone Number, IP Address which

are always present and are of fixed width.

Data files are organized by date center number and date.

There is a directory for each day, which contains a file with

its readings from that center.

To visualize the detail record, consider the following

sample lines of input data (some unused columns have been

dropped to fit the page):
...QQTC20120613112720120613113210140...117710229...

...SNTP20120613113120120613113210140...11771027...

...HTTP20120613112720120613113210140...117710221...

...MRDR20120613112920120613113210141...117710217...

B. MapReduce Model

MapReduce works by breaking the processing into two

phases: the map phase and the reduce phase. Each phase has

key-value pairs as input and output, the types of which may

be chosen by the programmer. The programmer also

specifies two functions: the map function and the reduce

function.

The input to our map phase is the raw CDR data. We

choose a text input format that gives us each line in the

dataset as a text value. The key is the offset of the beginning

of the line from the beginning of the file, but as we have no

need for this, we ignore it.

Our map function is focused on pulling out the necessary

parameter as: application class, start Time, source IP

address, phone number, send package, receive package, etc.

Since these are the fields we are interested in.

In this case, the map function is just a data preparation

phase, setting up the data in such a way that the reducer

function can do its work on it: finding and counting the

necessary data for deep service analysis. The map function is

also a good place to drop bad records: here we filter out data

that are missing, suspect, or erroneous.

These lines are presented to the map function as the key-

value pairs:
(0, QQTC201206131127... 014088182138...162518dial1...)

(128, SNTP201206131212... 028028182138...152513ip1...)

(256, HTTP201206131317... 016088182137...127521dial1...)

...

The keys are the line offsets within the file, which we

ignore in our map function. The map function merely

extracts the necessary data segment and emits them as its

output. For example, the application class and send package

can be interpreted as:
(QQTC, 21)

 (SNTP, 17)

 (HTTP, 11)

...

The output from the map function is processed by the

MapReduce framework before being sent to the reduce

function. This processing sorts and groups the key-value

pairs by key. So, continuing the example, our reduce

function sees the following input:
(QQTC, [21, 16 ,22...])

(SNTP, [17, 10...])

(HTTP,[11, 6...])

Each application class with a list of all its sending

package. All the reduce function has to do now is iterate

through the list and pick up the sum for each reading:
(QQTC, 4621)

(SNTP, 1022)

(HTTP, 502)

This is the final output: the total send package in each

application class at a time

V. STATISTIC AND QUERY

A. Data analysis

Usually 3G carrier want to know statistic data such as
which application is mostly used by the smart phone user at
a time, daily or hourly reports for send and/or receive
packages for specific app class and/or IP address . Since the
bulk of the data(because the total data for a popular 3G
dataset is huge), analysis tasks cannot be performed by
RDBMS.

30

Fortunately, the stream datasets in HDFS are structured
and could be easily partitioned. Hive and Hadoop can be
easily used for such data analysis and statistic applications.

Our experiment is a typical application in the online
CDR data analysis. All of these are easily expressible in
Hive using a couple of SQL queries (that would, in turn,
generate multiple Hadoop jobs).

Here different data, such as application class and send
and/or receive packages, can be structured as tables in Hive.
Following is the detail steps.

(1). Create Hive table；

(2). Load data
(3).Group by application class for send packages.
(4). List Result as,
 ...
Hive is proved as easily useful for assembling statistic

data and then feeding the same into a data analysis engine.
From this statistic info in Hive table, the daily or hourly

reports for send and receive package can be produced
according to application class and IP address, etc.

If only an estimate were required, the same queries can
be run for a sample set of the users using sampling
functionality natively supported by Hive.

Then, the standard statistic info can also be deduced
under this framework. This would involve sampling CDR
data, grouping it by time and then finding the number of data
model at different time points via a custom reduce script.

B. Ad-hoc analysis and product feedback

Although Hive and Hadoop are batch processing systems
that cannot serve the computed data with the same latency as
a usual RDBMS, they are to be able to support ad-hoc
analysis and product feedback solutions.

For example, some 3G Application(e.g. QQ) provider
usually makes product changes, and it is typical for product
managers to understand the impact of a new feature, based
on user engagement as well as on the user behavior.

The product team may even wish to do a deeper analysis
on what is the impact of the change based on gender and
age. A lot of this type of analysis could be done with
Hadoop by using Hive and regular SQL.

The measurement of usage can be easily expressed as a
join of the user information(age or/and gender) for the
particular related feature in CDR. It can be used to compute
the effect of 3G app changes on different age or/and gender.

In our experiment, the QQ provider need to do ad-hoc
query for packages sent by male at a time. A HiveQL
OuterJoin can be used to do this as shown in Figure 2.
Assume the CDR_Table provides the CDR data, and
User_Table contains gender info as User_Table (PhoneNo
string , Name string , gender tinyint).

Data in User_Table is listed as,
 13800127XXX Tom 1

 13701166XXX Alice 0
 13911245XXX John 1
 ...

Some of this analysis needs the use of custom map and
reduce scripts in conjunction with the Hive SQL, and that is
also easy to plug into a Hive query.

Figure 2 Outer Join for ad-hoc table

VI. CONCLUSIONS

In this paper we proposed and implemented a new
distributed workflow system CDS-MR. It is a MapReduce
systems based on composition of Hadoop and Hive. The
architecture of CDS-MR is described. CDS-MR is extended
to support both statistic and ad-hoc queries. In our
experiments, we demonstrated that the CDS-MR is fit for
deep service analysis, which explains the motivation for our
CDS-MR.

ACKNOWLEDGMENT

This paper is supported by the Opening Project of State
Key Laboratory of Digital Publishing Technology.

REFERENCES

[1] K. Arrow. Aspects of the theory of risk-bearing. Helsinki: Yrjo
Jahnsson Lectures, 1965.

[2] A. AuYoung, L. Grit, J. Wiener, and J. Wilkes. Service contracts and

aggregate utility functions. In Proceedings of the IEEE International
Symposium on High Performance Distributed Computing (HPDC),

June 2006.

[3] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query
processing. In ACM SIGMOD: International Conference on

Management of Data, 2007.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.Ho, R.
Neugebauer, I. Pratt, and A. Warfield. Xen and the art of

virtualization. In Proceedings of the ACM Symposium on Operating

Systems Principles, 2003.
[5] R. E. Bryant. Data-intensive supercomputing: The case for DISC.

Technical Report CMU-CS-07-128, Carnegie Mellon University,

2007
[6] K. Cardona, J. Secretan, M. Georgiopoulos, and G.Anagnostopoulos.

A grid based system for data mining using MapReduce. Technical

Report TR-2007-02, AMALTHEA, 2007.
[7] B. N. Chun, P. Buonadonna, A. AuYoung, C. Ng, D. C. Parkes, J.

Shneidman, A. C. Snoeren, and A. Vahdat. Mirage: A microeconomic

resource allocation system for SensorNet testbeds. In Proceedings of
the 2nd IEEE Workshop on Embedded Networked Sensors, 2005.

[8] B. N. Chun and D. E. Culler. Market-based proportional resource
sharing for clusters. Technical Report CSD-1092, University of

California at Berkeley, Computer Science Division, January 2000.

[9] B. N. Chun and D. E. Culler. User-centric performance analysis of
market-based cluster batch schedulers. In Proceedings of the 2nd

IEEE International Symposium on Cluster Computing and the Grid,

2002.

31

