
Antivirus in the Network Cloud

Xu Da-wei

School of Electronic and Information Engineering

Changchun University

Changchun, China

e-mail: 24003908@qq.com

Yu Cun-jiang

School of Electronic and Information Engineering

Changchun University

Changchun, China

e-mail: 358219140@qq.com

Abstract—In this paper a new model for malware detection on

end hosts based on providing antivirus as an in-cloud network

service. This model enables identification of malicious and

unwanted software by multiple, heterogeneous detection

engines in parallel, a technique we term ‘N-version protection’.

This approach provides several important benefits including

better detection of malicious software, enhanced forensics

capabilities, retrospective detection, and improved

deployability and management. To explore this idea we

construct and deploy a production quality in-cloud antivirus

system called CloudAV.CloudAV includes a lightweight, cross-

platform host agent and a network service with ten antivirus

engines and two behavioral detection engines.

Keywords-antivirus;network cloud; cloudAV

I. INTRODUCTION

Detecting malicious software is a complex problem. The
vast, ever-increasing ecosystem of malicious software and
tools presents a daunting challenge for network operators and
IT administrators. Antivirus software is one of the most
widely used tools for detecting and stopping malicious and
unwanted software. However, the elevating sophistication of
modern malicious software means that it is increasingly
challenging for any single vendor to develop signatures for
every new threat [1].

In this paper we suggest a new model for the detection
functionality currently performed by host-based antivirus
software. To explore and validate this new antivirus model,
we propose an in-cloud antivirus architecture that consists of
three major components: a lightweight host agent run on end
hosts like desktops, laptops, and mobiles devices that
identifies new files and sends them into the network for
analysis; a network service that receives files from hosts and
identifies malicious or unwanted content; and an archival and
forensics service that stores information about analyzed files
and provides a management interface for operators. We
construct, deploy, and evaluate a production quality in-cloud
antivirus system called CloudAV. CloudAV includes a
lightweight, cross-platform host agent for Windows, Linux,
and FreeBSD and a network service consisting of ten
antivirus engines and two behavioral detection engines.

II. APPROACH

This paper advocates a new model for the detection
functionality currently performed by antivirus software. First,
the detection capabilities currently provided by host-based
antivirus software can be more efficiently and effectively

provided as an in-cloud network service. Second, the
identification of malicious and unwanted software should be
determined by multiple, heterogeneous detection engines in
parallel.

A. Deployment Environment

Before getting into details of the approach, it is important
to understand the environment in which such architecture is
most effective. First and foremost, we do not see the
architecture replacing existing antivirus or intrusion
detection solutions. We base our approach on the same threat
model as existing host-based antivirus solutions and assume
an in-cloud antivirus service would run as an additional layer
of protection to augment existing security systems such as
those inside an organizational network like an enterprise.
Some possible deployment environments include: enterprise
networks and government networks and mobile/cellular
networks and privacy implications.

B. In-Cloud Detection

The core of the proposed approach is moving the
detection of malicious and unwanted files from end hosts and
into the network. This idea was originally introduced in and
we significantly extend and evaluate the concept in this paper.

There is currently a strong trend toward moving services
from end host and monolithic servers into the network cloud
[2]. Moving the detection of malicious and unwanted files
into the network significantly lowers the complexity of host-
based monitoring software. Clients no longer need to
continually update their local signature database, reducing
administrative cost. Simplifying the host software also
decreases the chance that it could contain exploitable
vulnerabilities. Finally, a lightweight host agent allows the
service to be extended to mobile and resource-limited
devices that lack sufficient processing power but remain an
enticing target for malware.

C. N-Version Protection

The second core component of the proposed approach is
a set of heterogeneous detection engines that are used to
provide analysis results on a file, also known as N-version
protection. This approach is very similar to N-version
programming, a paradigm in which multiple
implementations of critical software are written by
independent parties to increase the reliability of software by
reducing the probability of concurrent failures. Traditionally,
N-version programming has been applied to systems
requiring high availability such as distributed file systems.
N-version programming has also been applied to security
realm to detect implementation faults in web services that

International Workshop on Cloud Computing and Information Security (CCIS 2013)

© 2013. The authors - Published by Atlantis Press 32

may be exploited by an attacker. While N-version
programming uses multiple implementations to increase fault
tolerance in complex software, the proposed approach uses
multiple independent implementations of detection engines
to increase coverage against a highly complex and ever-
evolving ecosystem of malicious software.

III. ARCHITECTURE

In order to move the detection of malicious and unwanted
files from end hosts and into the network, several important
challenges must be overcome [3]: (1) unlike existing
antivirus software, files must transported into the network for
analysis; (2) an efficient analysis system must be constructed
to handle the analysis of files from many different hosts
using many different detection engines in parallel; (3) the
performance of the system must be similar or better than
existing detection systems such as antivirus software.

To address these problems we envision an architecture
that includes three major components. The first is a
lightweight host agent run on end systems like desktops,
laptops, and mobiles devices that identifies new files and
sends them into the network for analysis. The second is a
network service that receives files from the host agent,
identifies malicious and unwanted content, and instructs
hosts whether access to the files is safe. The third component
is an archival and forensics service that stores information
about what files were analyzed and provides a query and
alerting interface for operators. Figure 1 shows the high level
architecture of the approach.

A. Client Software

Malicious and unwanted files can enter an organization
from many sources. For example, mobile devices, an USB
drive, email attachments, downloads, and vulnerable network
services are all common entry points. Due to the broad range
of entry vectors, the proposed architecture uses a lightweight
file acquisition agent run on each end system. Just like

existing antivirus software, the host agent runs on each end
host and inspects each file on the system. Access to each file
is trapped and diverted to a handling routine which begins by
generating a unique identifier (UID) of the file and
comparing that identifier against a cache of previously
analyzed files. If a file UID is not present in the cache then
the file is sent to the in-cloud network service for analysis.
To make the analysis process more efficient, the architecture
provides a method for sending a file for analysis as soon as it
is written on the end host’s file system. Doing so amortizes
the transmission and analysis cost over the time elapsed
between file creation and system or user-initiated access [4].

(1) Threat Model
The threat model for the host agent is similar to that of

existing software protection mechanisms such as antivirus,
host-based firewalls, and host-based intrusion detection. As
with these host-based systems, if an attacker has already
achieved code execution privileges, it may be possible to
evade or disable the host agent. As described in Section 2,
antivirus software contains much vulnerability that can be
directly targeted by malware due to its complexity. By
reducing the complexity of the host agent by moving
detection into the network, it is possible to reduce the
vulnerability footprint of host software that may lead to
elevated privileges or code execution [5].

(2) File Unique Identifiers
One of the core components of the host agent is the file

unique identifier (UID) generator. The goal of the UID
generator is to provide a compact summary of a file. That
summary is transmitted over the network to determine if an
identical file has already been analyzed by the network
service. One of the simplest methods of generating such a
UID is a cryptographic hash of a file, such as MD5 or SHA-1.
Cryptographic hashes are fast and provide excellent
resistance to collision attacks. However, the same collision

Figure 1: Architectural approach for in-cloud file analysis service

resistance also means that changing a single byte in a file
results in completely different UID.To combat polymorphic
threats, a more complex UID generator algorithm could be
employed.

(3) User Interface
We envision three majors modes of operation that affect

how users interact with the host agent that range from less to
more interactive. These include three modes: transparent
mode and warning mode and blocking mode.

B. Network Service

The second major component of the architecture is the
network service responsible for file analysis. The core task of
the network service is to determine whether a file is
malicious or unwanted. Unlike existing systems, each file is
analyzed by a collection of detection engines. That is, each
file is analyzed by multiple detection engines in parallel and
a final determination of whether a file is malicious or
unwanted is made by aggregating these individual results
into a threat report [6].

33

(1) Detection Engines
A cluster of servers can quickly analyze files using

multiple detection techniques. Additional detection engines
can easily be integrated into a network service, allowing for
considerable extensibility. Such comprehensive analysis can
significantly increase the detection coverage of malicious
software. In addition, the use of engines from different
vendors using different detection techniques means that the
overall result does not rely too heavily on a single vendor or
detection technology.

(2) Result Aggregation
The results from the different detection engines must be

combined to determine whether a file is safe to open, access,
or execute. The result of the aggregation process is a threat
report that is sent to the host agent and can be cached on the
server. A threat report can contain a variety of metadata and
analysis results about a file. The specific contents of the
report depend on the deployment scenario. Some possible
report sections include: (1) an operation directive; a set of
instructions indicating the action to be performed by the host
agent, such as how the file should be accessed, opened,
executed, or quarantined; (2) family/variant labels; a list of
malware family/variant classification labels assigned to the
file by the different detection engines; and (3) behavioral
analysis; a list of host and network behaviors observed
during simulation. This may include information about
processes spawned, files and registry keys modified, network
activity, or other state changes.

C. Archival and Forensics Service

The third and final component of the architecture is a
service that provides information on file usage across
participating hosts which can assist in post-infection forensic
analysis. While some forensics tracking systems provide
fine-grained details tracing back to the exact vulnerable
processes and system objects involved in an infection, they
are often accompanied by high storage requirements and
performance degradation. Instead, we opt for a lightweight
solution consisting of file access information sent by the host
agent and stored securely by the network service, in addition
to the behavioral profiles of malicious software generated by
the behavioral detection engines. Depending on the privacy
policy of organization, a tunable amount of forensics
information can be logged and sent to the archival service.
For example, a more security conscious organization could
specify that information about every executable launch be
recorded and sent to the archival service. Another policy
might specify that only accesses to unsafe files be archived
without any personally identifiable information.

Archiving forensic and file usage information provides a
rich information source for both security professionals and
administrators. From a security perspective, tracking the
system events leading up to an infection can assist in
determining its cause, assessing the risk involved with the
compromise, and aiding in any necessary disinfection and
cleanup. In addition, threat reports from behavior slanginess
provide a valuable source of forensic data as the exact
operations performed by a piece of malicious software can
be analyzed in detail. From a general administration

perspective, knowledge of what applications and files are
frequently in use can aid the placement of file caches,
application servers, and even be used to determine the
optimal number of licenses needed for expensive
applications.

Consider the outbreak of a zero-day exploit. An
enterprise might receive a notice of a new malware attack
and wonder how many of their systems were infected. In the
past, this might require performing an inventory of all
systems, determining which were running vulnerable
software, and then manually inspecting each system. Using
the forensics archival interface in the proposed architecture,
an operator could search for the UID of the malicious file
over the past few months and instantly find out where, when,
and who opened the file and what malicious actions the file
performed. The impacted machines could then immediately
be quarantined. The forensics archive also enables
retrospective detection. The complete archive of files that are
transmitted to the network service may be re-scanned by
available engines whenever a signature update occurs.
Retrospective detection allows previously undetected
malware that has infected a host to be identified and
quarantined.

IV. CLOUDAV IMPLEMENTATION

To explore and validate the proposed in-cloud antivirus
architecture, we constructed a production quality
implementation called CloudAV. In this section we describe
how CloudAV implements each of the three main
components of the architecture.

A. Host Agent

We implement the host agent for a variety of platforms
including Windows 2000/XP/Vista, Linux 2.4/2.6, and
FreeBSD 6.0+. The implementation of the host agent is
designed to acquire executable files for analysis by the in-
cloud network service, as executables are a common source
of malicious content.

While the exact APIs are platform dependent
(CreateProcess on Win32, execve syscall on Linux 2.4, LSM
hooks on Linux 2.6, etc), the host agent hooks and interposes
on system events. This interposition is implemented via the
MadCodeHook package on the Win32 platform and via the
Dazuko framework for the other platforms. Process creation
events are interposed upon by the host agent to acquire and
process candidate executables before they are allowed to
continue.

In addition, filesystem events are captured to identify
new files entering a host and preemptively transfer them to
the network service before execution to eliminate any user-
perceived latencies. As motivating factors of our work
include the complexity and security risks involved in running
host-based antivirus, the host agent was designed to be
simple and lightweight, both in code size and resource
requirements. The Win32 agent is approximately 1500 lines
of code of which 60% is managed code, further reducing the
vulnerability profile of the agent. The agent for the other
platforms is written in python and is under 300 lines of code.

34

While the host agent is primarily targeted at end hosts,
our architecture is also effective in other deployment
scenarios such as mail servers. To demonstrate this, we also
implemented a milter (mail filter) frontend for use with mail
transfer agents (MTAs) such as Send mail and Postfix to
scan all attachments on incoming emails. Using the pymilter
API, the milter frontend weighs in at approximately 100
lines of code.

B. Network Service

The network service acts as a dispatch manager between
the host agent and the backend analysis engines. Incoming
candidate files are received, analyzed, and a threat report is
returned to the host agent dictating the appropriate action to
take. Communication between the host agent and the
network service uses a HTTP wire protocol protected by
mutually authenticated SSL/TLS. Between the components
within the network service itself, communication is
performed via a publish/subscribe bus to allow
modularization and effective scalability.

The network service allows for various priorities to be
assigned to analysis requests to aid latency-sensitive
applications and penalize misbehaving hosts. This also
enables the system to penalize or temporarily suspend
misbehaving hosts than may try to submit many analysis
requests or otherwise flood the system.

Each backend engine runs in a Xen virtualized container,
which offers significant advantages in terms of isolation and
scalability. If one of the antivirus engines in the backend is
targeted and successfully exploited by a malicious candidate
file, the virtualized container can simply be disposed of and
immediately reverted to a clean snapshot. As for scalability,
virtualized containers allows the network service to spin up
multiple instances of a particular engine when demand for its
services increase.

Our current implementation employs 12 engines: 10
traditional antivirus engines (Avast, AVG, BitDefender,
ClamAV, F-Prot, F-Secure, Kaspersky, McAfee, Symantec,
and Trend Micro) and 2 behavioral engines (Norman
Sandbox and CWSandbox). 9 of the backend engines run in
a Windows XP environment using Xen’s HVM capabilities
while the other 3 run in a Gentoo Linux environment using
Xen domU paravirtualization. Implementing each particular
engine for the backend is a simple task and extending the
backend with additional engines in the future is equally as
simple. For reference, the amount of code required for each
engine is 42 lines of python code on average with a median
of 26 lines of code.

C. Management Interface

The third component is a management interface which
provides access to the forensics archive, policy enforcement,
alerting, and report generation. These interfaces are
exposed to network administrators via a web based
management interface. The web interface is implemented
using Cherrypy, a python web development framework. The
centralized management and network-based architecture
allows for administrators to enforce network wide policies
and define alerts when those policies are violated. Alerts are

defined through a flexible specification language consisting
of attributes describing an access request from the host agent
and boolean predicates similar to an SQL WHERE clause.
The specification language allows for notification for
triggered alerts (via email, syslog, SNMP) and enforcement
of administrator defined policies. While these unwanted
applications may not be explicitly malicious, they may have
a negative effect on host or network performance or be
against acceptable use policies. We observed several classes
of these potentially unwanted applications in our production
deployment including P2P applications (uTorrent, Limewire,
etc) and multi-player gaming (World of Warcraft, online
poker, etc). Other policies can be defined to reinforce
prudent security practices, such as blocking the user from
executing attachments from an email application.

V. CONCLUSION

To address the ever-growing sophistication and threat of
modern malicious software, we have proposed a new model
for antivirus deployment by providing antivirus functionality
as a network service using N-version protection. This novel
paradigm provides significant advantages over traditional
host-based antivirus including better detection of malicious
software, enhanced forensics capabilities, retrospective
detection, and improved deploy ability and management. In
the future, we plan to investigate the application of N-version
protection to intrusion detection, phasing, and other realms
of security that may benefit from heterogeneity. We also plan
to open our backend analysis infrastructure to security
researchers to aid in the detection and classification of
collected malware samples.

REFERENCES

[1] Adobe Systems Incorporated.Apsb07-18:Adobe reader and acrobat
vulnerability.http://www.adobe.com/support/security/bulletins/apsb07
-18.html, 2007.

[2] Algirdas Avizienis. The n-version approach to fault-tolerant software.
IEEE Transactions on Software Engineering, 1985.

[3] Paul Baecher, Markus Koetter, Thorsten Holz, Maximillian Dornseif,
and Felix Freiling. The nepenthes platform: An efficient approach to
collect malware. In 9th International Symposium On Recent
Advances In Intrusion Detection. Springer-Verlag, 2006.

[4] Josh Ballard. An Eye on the Storm: Inside the Storm Epidemic.41st
Meeting of the North Americian Network Operators Group,October
2007.

[5] Barracuda Networks. Barracuda spam
firewall.http://www.barracudanetworks.com, 2007.

[6] Carsten Willems and Thorsten Holz. Cwsandbox.
http://www.cwsandbox.org/, 2007.

35

