
Architectural Support for Lease-Regulated Secret Data

Lanfang Ren, Hongtao Bai, Fei Liu
Editorial Department, Institute of Security China Mobile,

Beijing, China

lanfangren@gmail.com

Abstract— Contemporary cloud software stack is large and

complex, where security vulnerabilities are routinely

discovered. Hence, it is hard or even impossible to place trust

on such a fragile platform to process some security-critical

data. In this paper, we propose an architectural solution that

extends processors with cryptographic support and policy

enforcement engine to regulate the usage of security-critical

data in an untrusted cloud platform. Specifically, we make a

specific case of using such a platform for protecting the secrecy

of lease-regulated data, which should only be accessed within a

predefined amount of times or before a specific date. We

further discuss how such protection is necessary in several

security-critical usage scenarios.

Keywords-Security, Data Security

I. INTRODUCTION

In the past few years, we have witnessed the commercial
successes of a number of cloud computing companies such
as Amazon [1], SafeForce, RackSpace, Google and
Microsoft. With the continually spreading of cloud
computing into more serious application domains, it is no
surprise to see cloud users are now increasingly put their
private data into the cloud platform.

Unfortunately, with the growing popularity of cloud
computing, the security guarantee of typical cloud platform
is not going towards better, but actually becomes worse than
ever before. On on hand, major cloud vendors usually
leverages a stack of commodity software to build their
platforms. For example, Amazon leverages Xen as the
hypervisor, a Linux-like manage virtual machine, as well as
a large number of user-level software written in python, ruby
and C. This essentially forms a virtually unbounded trusted
computing base where security vulnerabilities are discovered
in a daily base [4]. On the other hand, with the inexperienced
and/or even malicious cloud operators managing such a
complex platform, it is very easy for an operator to divulge
users’ secret data, either intentionally or unintentionally [14].
Hence, it is no surprise to see that Gartner has ranked
“privileged operators” as the top threat to cloud security [6].

On the other hand, there are usually some data that
should be processed in a cloud platform, partially due to the
massively available computing resources. In many cases,
such data only needs to be accessed within a limited number
of time or before a specific date and time. However, with the
complexity of the cloud platform and virtually unbounded
trusted computing base, it is hard or even impossible to
ensure users’ data access policies using existing cloud
regulating software. Hence, an attacker may easily violate

such policies by arbitrarily extend the access duration and
times for such data.

To address this issue, this paper proposes an architectural
approach that extends processors with cryptographic logics
and a policy enforcement engine to ensure users’ secret data
is accessed while strictly respecting user-specific security
policies. To this end, we use the notion of lease-regulated
secrete data (LRSD for short) to describe a piece of data that
requires such regulation. LRSD is encapsulated together with
the code that is allowed to access the secrete data, which is
self-contained such that the code cannot invoke external code
or reference external data in order to complete its
functionalities. LRSD is encrypted and signed by a data
provider, with access policies being embedded inside.

We propose to extend processors with cryptographic
logics that can decrypt LRSD only in on-chip caches such
that the secrete data will never exist in plain text in external
memory. The processor can also use its private key to verify
originality of an LRSD and determine whether it is able to
access such data.

Currently, LRSD is built with three kinds of policies.
First, it contains a list of processors that can access the secret
data. A processor not in the list cannot access the data. This
also regulates the communication of two LRSDs running on
two machines. Second, it can be embedded with the exact
amount of times that it could be accessed. Here, the number
of times is the number of times that the LRSD code module
could be invoked, not how the processor reference the
secrete data. Third, LRSD can be embedded with policies
regarding before or after a specific date when LRSD can be
accessed. The deadline of access will be judged using the
internal timestamp counter inside the processor such that an
adversary cannot fake a timestamp to arbitrarily extend the
lifecycle.

Protecting LRSD by a secure processor can reduce the
trusted computing base (TCB) to the processor. This can
significantly increase the trustworthiness of a cloud platform.
To illustrate the potential usage of LRSD, we further use two
cases such as secure coupon accesses and decalcification of
some secrete data until a specific date.

II. RELATED WORK

The notion of lease-regulated secret data has some
similarities with policy-sealed data [11]. However,
policysealed data requires trusting the cloud platform to
ensure such policies, while LRSD is protected by processors.
Further, the policies in [11] mostly concern with where a
specific piece of data can be accessed, while LRSD provides
additional policies regarding the lifecycle of secret data.

International Workshop on Cloud Computing and Information Security (CCIS 2013)

© 2013. The authors - Published by Atlantis Press 36

LRSD is also related to self-destruction data in vanish [5].
However, the policies in LRSD is more expressive than that
in vanish. Further, vanish cannot protect against malicious
operating systems but purely relies on the churn
characteristics in distributed hash tables to ensure data
destruction.

The secure processor design is related to prior work on
secure processors [8], [9], [12], [7]. For example, Bastion [2]
and SecureME [3] have also extended processor with
security functionalities to protect against hardware attacks. A
most recent work, called HyperCoffer [13], extend
processors with security and integrity protection engines
such that all data goes out of on-chip cache will be encrypted
and hashed. However, these designs target at a complete
different levels and granularities of protection. For example,
The protection granularities of SecureME and HyperCoffer
are at the processes and virtual machines accordingly.
Bastion, instead, need to trust the hypervisor to securely
protect a module. More importantly, they do not provide the
lease policies as that in LSRD.

III. DESIGN

We use secure processor to protect user’s secret data on
the cloud, and further extend the processor to support extend
memory, which could be used to store persistent data across
executions. By adopting the secure processor substrate, the
system is able to enforce policies defined by user that are
used to constrain the access of specific data.

A. Hardware Architecture

Secure processor leverages hardware encryption and hash
tree to protect the privacy and integrity of specific data. It
has two modes: secure mode and normal mode. In normal
mode it executes just as a normal processor, while in secure
mode, all of the data outside the chip is considered as
encrypted will be decrypted as long as being fetched into the
cache. Thus, only the processor is trusted, and no external
device including the memory and peripherals need to be
trusted, which could significantly reduce the TCB.
Meanwhile, each memory update will recalculate the
corresponding merkle hash tree. When the data is loaded into
the cache, the integrity checking engine will recalculate the
hash of the cache line to verify whether the data has been
illegally modified or not. Therefore, a malicious software,
e.g., the OS, cannot modify the protected data, otherwise an
alarm will be triggered during hash checking. Rogers et al.
proposed AISE (Address Independent Seed Encryption) and
BMT (Bonsai Merkle Tree) [10] based mechanisms to
implement a efficient secure processor, which introduces less
than 5% performance overhead. We use these two
technologies as the foundation of our design.

In this paper, we extend the secure processor with
following components, as shown in table 1. The KP is
unique for each processor and is considered to be safe since
it is embedded inside the hardware. The corresponding
public key is maintained by the manufactory, and the user is
able to access the list of public key for verification. The

NVR and EMR are two registers. The LRSD-Table is used to
save the information of installed LRSD.

Figure 1. Example of a ONE-COLUMN figure caption.

TABLE I. COMPONENTS OF SECURE PROCESSOR

Name

Description

KP
Private key embedded in the processor, which is
unique.

NVR Non-Volatile Register with 128 bits.

EMR
Register saving the start address of the extended

memory.

LRSD-

Table
The table saved all of the installed LRSD.

B. Extended Memory

It is required that some data needs to be stored in non-
volatile memory safely. For example, the counter that record
how many times the data has already been used. One way is
to save the counter directly inside the secure processor, using
NVR . However, the solution is not scalable and has low
performance, since the number of NVR is limited and is
slow to write. In this paper, we propose a novel way to
extend memory to support store data in a non-volatile and
secure way.

During initialization of secure processor, the OS will
assign a region of memory as extended memory, with the
start address of the memory saved in EMR . The content of
the memory is loaded from the disk, whose hash must be
identical to the value saved in NVR . The OS is responsible
to keep the consistency between the data in memory and on
disk in order to tolerant machine crash. The extended
memory can only be written by the protected code within the
LRSD.

37

The process of extend memory updating is as follows:
(1) the protected code writes a new value to the extend
memory. (2) the processor recalculate the hash value of the
memory and trigger an interrupt to notify the OS. (3) the OS
will save the updated memory on the disk in the interrupt
handler. It is noted that OS will save the data into a shadow
copy to avoid overwriting. (4) after that, the processor write
the new hash of the updated extend memory to NVR and
continue to execute. Next time during initialization, the OS is
responsible to load the data stored in the disk to the extend
memory. The processor will check the hash of the loaded
extend memory to ensure its integrity.

The design of extend memory is capable to tolerant
machine crash at arbitrary time, thanks to the disk storage
and the shadow copy mechanism. We consider the write
operations are rare during execution, thus the performance
overhead introduced is not significant.

C. LRSD Abstraction

An LRSD includes following components:

 Secure vector: The vector is used to install the LRSD
to the secure processor.

 Code section: This section contains all of the code of
the LRSD.

 Data section: This section includes all the related
data.

 Metadata section: The metadata involves
information about the LRSD.

 API header: The API header involves the offset of
functions provided by the LRSD.

In order to install the LRSD on the secure processor, a
secure vector must be used as parameter. The vector contains
the encryption key of the protected LRSD, aka., KLRSD. The
vector itself is encrypted by the public key of the target
secure processor, thus only the specific processor could
decrypt the vector to get KLRSD. The data of LRSD could be
accessed by its own code, since the data structure of LRSD is
only available to the protected code. The metadata section
contains information about the LRSD, including its hash
value and LRSD size. All of the code, data and metadata
sections are encrypted by KLRSD, while the API header is in
plaintext which is used for other parts of the program to
invoke functions provided by the protected LRSD. The code
inside LRSD cannot call the functions outside, so it should
be a closure of itself.

D. Secure Loader

In order to load an LRSD into the processor and memory,
we introduce a component named secure loader. The loading
process is as following: First, the LRSD is loaded into the
memory. Then the loader invokes an instruction, lrsd_install,
to install the LRSD into the processor. The processor loads
the secure vector to get the KLRSD , allocs a new entry in
LRSD-Table to save the start address and size of the LRSD.
The address range is used for the processor to automatically
switch between secure and normal modes. After that, the
loader will load API header so that other components can
call the functions provided by LRSD.

E. Policies Enforcement

We leverage LRSD to implement following three

policies:
Limiting the processors : As mentioned previously, an

LRSD can only be installed on a secure processor if and only
if the user constructs a secure vector for that processor.
Otherwise the processor cannot get KLRSD, and thus has no
way to decrypt the data or code. Therefore, a user can control
the list of processors that is capable to access LRSD by
generating corresponding secure vectors for each processor.

Limiting the access times: Since the data of an LRSD is
only accessible to its own code, the user can add a counter in
the accessing code. As long as the code is executed, it
increases the counter. When the counter has expired some
threshold, the code will deny any further accessing. In order
to keep the counter persistent, the processor will save the
counter inside the LRSD, with the process similar to extend
memory writing. Thus, even an attack use another secure
vector to run the code on another processor after counter
expiration, he still cannot access the data.

Limiting the period of accessing: When accessing the
data in LRSD, the corresponding code can get the current
time and check whether it is within a certain period. If the
time is without the period, then it could deny any access. In
order to ensure that the timestamp is not faked, the code
should embed a public key of a trusted time server, and send
a nonce to prevent replay attack. Each time when it gets a
timestamp, it sends the nonce to the trusted time server, who
will sign the timestamp as well as the nonce. In this way, the
freshness of the timestamp could be ensured.

Figure 2. The time server protocol

IV. USAGE CASES OF LRSD

This section describes two potential usage cases of LRSD.
The first one is using a secure coupon system and the second
one is using a secure declassification of a secure.

A. Securing Coupons using LRSD

Providing coupon is a popular means for merchants to
spread their services or goods. However, under a cloud-
based e-commerce web-site, the server managing coupons
may be tampered with by a cloud operator in order to gain
financial advantages by providing unlimited coupons with
significant lower prices to end users. For example, several
mobile network operators have faced issues that some
internal operators collude together to sell unlimited internet
access coupons to end users, causing financial loss in the
companies. Using LRSD, a network operator can secure the

38

coupon distribution by encapsulating the coupon decision
code and the coupon list as LRSDs. As the secure processor
will faithfully enforce the access policies of the coupon data,
even a cloud operator cannot tamper with LRSDs.

B. Secure Data Declassification

Listed companies usually need to regularly disclose their
financial data to the public, which sometime will incur
significant impact over the stock market. It has long been an
issue that some insiders can get the financial data earlier than
the supposed date. These insiders can leverage such data to
take action on the stock market to make money. A potential
approach to mitigating such issue is that the regulation
officers can request the chief financial officer in listed
companies to encapsulate their data using LRSD and specify
that the LRSD can only be accessed after the disclosure date.
By this means, even if the financial data encapsulated using
LRSD will be spread across different parts, they cannot
access such data before the designated date.

V. CONCLUSION

This paper analyzed the security threats of commodity
cloud platforms. To address low trustworthiness due to
unbounded trusted computing base, this paper proposed
lease-regulated secret data (LRSD for short) that
encapsulated secret data together with the code as well as
access policies together. To ensure the security of LRSD,
this paper also described a secure processor design with
cryptographic logic and policy enforcement engine. Using
two compelling cases, this paper demonstrated the potential
usefulness of LRSD.

ACKNOWLEDGMENT

This paper is supported by 2012 National Science and
Technology major projects "The next-generation broadband
wireless mobile communications network", Titled "cloud
computing application mode mobile Internet security
research" (No. 2012ZX03002002).

REFERENCES

[1] Amazon Inc., “Amazon Elastic Compute Cloud (Amazon EC2),”
http://aws.amazon.com/ec2/, 2011.

[2] D. Champagne and R. B. Lee, “Scalable architectural support for
trusted software,” in IEEE Symposium on high performance
computer architecture. IEEE, 2010, pp. 1–12.

[3] S. Chhabra, B. Rogers, Y. Solihin, and M. Prvulovic, “Secureme: a
hardware-software approach to full system security,” in International
conference on Supercomputing. ACM, 2011, pp. 108–119.

[4] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan, P.
Loscocco, and A. Warfield, “Breaking up is hard to do: security and
functionality in a commodity hypervisor,” in ACM Symposium on
Operating Systems Principles. ACM, 2011, pp. 189–202.

[5] R. Geambasu, T. Kohno, A. A. Levy, and H. M. Levy, “Vanish:
Increasing data privacy with self-destructing data.” in USENIX
Security Symposium, 2009, pp. 299–316.

[6] J. Heiser and M. Nicolett, “Assessing the security risks of cloud
computing,” http://www.gartner.com/DisplayDocument?id=685308,
2008

[7] R. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin, and Z. Wang,
“Architecture for protecting critical secrets in microprocessors,” in
Proc. ISCA, 2005, pp. 2–13.

[8] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,
and M. Horowitz, “Architectural support for copy and tamper
resistant software,” in Proc. ASPLOS, 2000, pp. 168–177.

[9] D. Lie, C. a. Thekkath, and M. Horowitz, “Implementing an untrusted
operating system on trusted hardware,” in Proc. SOSP, 2003.

[10] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using Address
Independent Seed Encryption and Bonsai Merkle Trees to Make
Secure Processors OS- and Performance-Friendly,” in Proc. MICRO,
2007, pp. 183–196.

[11] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu,
“Policysealed data: a new abstraction for building trusted cloud
services,” in USENIX Security Symposium. USENIX Association,
Aug. 2012.

[12] G. Suh, D. Clarke, B. Gassend, M. Van Dijk, and S. Devadas,
“AEGIS: architecture for tamper-evident and tamper-resistant
processing,” in Proc. Supercomputing, 2003.

[13] Y. Xia, Y. Liu, and H. Chen, “Architecture support for
guesttransparent vm protection from untrusted hypervisor and
physical attacks.” in IEEE Symposium on high performance
computer architecture, 2013, pp. 246–257.

[14] F. Zhang, J. Chen, H. Chen, and B. Zang, “Cloudvisor: retrofitting
protection of virtual machines in multi-tenant cloud with nested
virtualization,” in ACM Symposium on Operating Systems Principles.
ACM, 2011, pp. 203–216.

39

