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Abstract— Contemporary cloud software stack is large and 

complex, where security vulnerabilities are routinely 

discovered. Hence, it is hard or even impossible to place trust 

on such a fragile platform to process some security-critical 

data. In this paper, we propose an architectural solution that 

extends processors with cryptographic support and policy 

enforcement engine to regulate the usage of security-critical 

data in an untrusted cloud platform. Specifically, we make a 

specific case of using such a platform for protecting the secrecy 

of lease-regulated data, which should only be accessed within a 

predefined amount of times or before a specific date. We 

further discuss how such protection is necessary in several 

security-critical usage scenarios. 
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I.  INTRODUCTION  

In the past few years, we have witnessed the commercial 
successes of a number of cloud computing companies such 
as Amazon [1], SafeForce, RackSpace, Google and 
Microsoft. With the continually spreading of cloud 
computing into more serious application domains, it is no 
surprise to see cloud users are now increasingly put their 
private data into the cloud platform. 

Unfortunately, with the growing popularity of cloud 
computing, the security guarantee of typical cloud platform 
is not going towards better, but actually becomes worse than 
ever before. On on hand, major cloud vendors usually 
leverages a stack of commodity software to build their 
platforms. For example, Amazon leverages Xen as the 
hypervisor, a Linux-like manage virtual machine, as well as 
a large number of user-level software written in python, ruby 
and C. This essentially forms a virtually unbounded trusted 
computing base where security vulnerabilities are discovered 
in a daily base [4]. On the other hand, with the inexperienced 
and/or even malicious cloud operators managing such a 
complex platform, it is very easy for an operator to divulge 
users’ secret data, either intentionally or unintentionally [14]. 
Hence, it is no surprise to see that Gartner has ranked 
“privileged operators” as the top threat to cloud security [6]. 

On the other hand, there are usually some data that 
should be processed in a cloud platform, partially due to the 
massively available computing resources. In many cases, 
such data only needs to be accessed within a limited number 
of time or before a specific date and time. However, with the 
complexity of the cloud platform and virtually unbounded 
trusted computing base, it is hard or even impossible to 
ensure users’ data access policies using existing cloud 
regulating software. Hence, an attacker may easily violate 

such policies by arbitrarily extend the access duration and 
times for such data. 

To address this issue, this paper proposes an architectural 
approach that extends processors with cryptographic logics 
and a policy enforcement engine to ensure users’ secret data 
is accessed while strictly respecting user-specific security 
policies. To this end, we use the notion of lease-regulated 
secrete data (LRSD for short) to describe a piece of data that 
requires such regulation. LRSD is encapsulated together with 
the code that is allowed to access the secrete data, which is 
self-contained such that the code cannot invoke external code 
or reference external data in order to complete its 
functionalities. LRSD is encrypted and signed by a data 
provider, with access policies being embedded inside. 

We propose to extend processors with cryptographic 
logics that can decrypt LRSD only in on-chip caches such 
that the secrete data will never exist in plain text in external 
memory. The processor can also use its private key to verify 
originality of an LRSD and determine whether it is able to 
access such data. 

Currently, LRSD is built with three kinds of policies. 
First, it contains a list of processors that can access the secret 
data. A processor not in the list cannot access the data. This 
also regulates the communication of two LRSDs running on 
two machines. Second, it can be embedded with the exact 
amount of times that it could be accessed. Here, the number 
of times is the number of times that the LRSD code module 
could be invoked, not how the processor reference the 
secrete data. Third, LRSD can be embedded with policies 
regarding before or after a specific date when LRSD can be 
accessed. The deadline of access will be judged using the 
internal timestamp counter inside the processor such that an 
adversary cannot fake a timestamp to arbitrarily extend the 
lifecycle.  

Protecting LRSD by a secure processor can reduce the 
trusted computing base (TCB) to the processor. This can 
significantly increase the trustworthiness of a cloud platform. 
To illustrate the potential usage of LRSD, we further use two 
cases such as secure coupon accesses and decalcification of 
some secrete data until a specific date. 

II. RELATED WORK 

The notion of lease-regulated secret data has some 
similarities with policy-sealed data [11]. However, 
policysealed data requires trusting the cloud platform to 
ensure such policies, while LRSD is protected by processors. 
Further, the policies in [11] mostly concern with where a 
specific piece of data can be accessed, while LRSD provides 
additional policies regarding the lifecycle of secret data. 
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LRSD is also related to self-destruction data in vanish [5]. 
However, the policies in LRSD is more expressive than that 
in vanish. Further, vanish cannot protect against malicious 
operating systems but purely relies on the churn 
characteristics in distributed hash tables to ensure data 
destruction. 

The secure processor design is related to prior work on 
secure processors [8], [9], [12], [7]. For example, Bastion [2] 
and SecureME [3] have also extended processor with 
security functionalities to protect against hardware attacks. A 
most recent work, called HyperCoffer [13], extend 
processors with security and integrity protection engines 
such that all data goes out of on-chip cache will be encrypted 
and hashed. However, these designs target at a complete 
different levels and granularities of protection. For example, 
The protection granularities of SecureME and HyperCoffer 
are at the processes and virtual machines accordingly. 
Bastion, instead, need to trust the hypervisor to securely 
protect a module. More importantly, they do not provide the 
lease policies as that in LSRD. 

 

III. DESIGN 

We use secure processor to protect user’s secret data on 
the cloud, and further extend the processor to support extend 
memory, which could be used to store persistent data across 
executions. By adopting the secure processor substrate, the 
system is able to enforce policies defined by user that are 
used to constrain the access of specific data. 

A. Hardware Architecture 

Secure processor leverages hardware encryption and hash 
tree to protect the privacy and integrity of specific data. It 
has two modes: secure mode and normal mode. In normal 
mode it executes just as a normal processor, while in secure 
mode, all of the data outside the chip is considered as 
encrypted will be decrypted as long as being fetched into the 
cache. Thus, only the processor is trusted, and no external 
device including the memory and peripherals need to be 
trusted, which could significantly reduce the TCB. 
Meanwhile, each memory update will recalculate the 
corresponding merkle hash tree. When the data is loaded into 
the cache, the integrity checking engine will recalculate the 
hash of the cache line to verify whether the data has been 
illegally modified or not. Therefore, a malicious software, 
e.g., the OS, cannot modify the protected data, otherwise an 
alarm will be triggered during hash checking. Rogers et al. 
proposed AISE (Address Independent Seed Encryption) and 
BMT (Bonsai Merkle Tree) [10] based mechanisms to 
implement a efficient secure processor, which introduces less 
than 5% performance overhead. We use these two 
technologies as the foundation of our design. 

In this paper, we extend the secure processor with 
following components, as shown in table 1. The KP  is 
unique for each processor and is considered to be safe since 
it is embedded inside the hardware. The corresponding 
public key is maintained by the manufactory, and the user is 
able to access the list of public key for verification. The 

NVR and EMR are two registers. The LRSD-Table is used to 
save the information of installed LRSD. 

 

Figure 1.  Example of a ONE-COLUMN figure caption. 

TABLE I.  COMPONENTS OF SECURE PROCESSOR 

 

Name  

 

Description 

KP 
Private key embedded in the processor, which is 
unique. 

NVR Non-Volatile Register with 128 bits. 

EMR 
Register saving the start address of the extended 

memory. 

LRSD-

Table 
The table saved all of the installed LRSD. 

 

B. Extended Memory 

It is required that some data needs to be stored in non-
volatile memory safely. For example, the counter that record 
how many times the data has already been used. One way is 
to save the counter directly inside the secure processor, using 
NVR . However, the solution is not scalable and has low 
performance, since the number of NVR  is limited and is 
slow to write. In this paper, we propose a novel way to 
extend memory to support store data in a non-volatile and 
secure way. 

During initialization of secure processor, the OS will 
assign a region of memory as extended memory, with the 
start address of the memory saved in EMR . The content of 
the memory is loaded from the disk, whose hash must be 
identical to the value saved in NVR . The OS is responsible 
to keep the consistency between the data in memory and on 
disk in order to tolerant machine crash. The extended 
memory can only be written by the protected code within the 
LRSD. 
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The process of extend memory updating is as follows: 
(1) the protected code writes a new value to the extend 
memory.  (2) the processor recalculate the hash value of the 
memory and trigger an interrupt to notify the OS. (3) the OS 
will save the updated memory on the disk in the interrupt 
handler. It is noted that OS will save the data into a shadow 
copy to avoid overwriting. (4) after that, the processor write 
the new hash of the updated extend memory to NVR  and 
continue to execute. Next time during initialization, the OS is 
responsible to load the data stored in the disk to the extend 
memory. The processor will check the hash of the loaded 
extend memory to ensure its integrity. 

The design of extend memory is capable to tolerant 
machine crash at arbitrary time, thanks to the disk storage 
and the shadow copy mechanism. We consider the write 
operations are rare during execution, thus the performance 
overhead introduced is not significant. 

C. LRSD Abstraction 

An LRSD includes following components: 

 Secure vector: The vector is used to install the LRSD 
to the secure processor. 

 Code section: This section contains all of the code of 
the LRSD. 

 Data section: This section includes all the related 
data. 

 Metadata section: The metadata involves 
information about the LRSD. 

 API header: The API header involves the offset of 
functions provided by the LRSD. 

In order to install the LRSD on the secure processor, a 
secure vector must be used as parameter. The vector contains 
the encryption key of the protected LRSD, aka., KLRSD. The 
vector itself is encrypted by the public key of the target 
secure processor, thus only the specific processor could 
decrypt the vector to get KLRSD. The data of LRSD could be 
accessed by its own code, since the data structure of LRSD is 
only available to the protected code. The metadata section 
contains information about the LRSD, including its hash 
value and LRSD size. All of the code, data and metadata 
sections are encrypted by KLRSD, while the API header is in 
plaintext which is used for other parts of the program to 
invoke functions provided by the protected LRSD. The code 
inside LRSD cannot call the functions outside, so it should 
be a closure of itself. 

D. Secure Loader 

In order to load an LRSD into the processor and memory, 
we introduce a component named secure loader. The loading 
process is as following: First, the LRSD is loaded into the 
memory. Then the loader invokes an instruction, lrsd_install, 
to install the LRSD into the processor. The processor loads 
the secure vector to get the KLRSD , allocs a new entry in 
LRSD-Table to save the start address and size of the LRSD. 
The address range is used for the processor to automatically 
switch between secure and normal modes. After that, the 
loader will load API header so that other components can 
call the functions provided by LRSD. 

E. Policies Enforcement 

We leverage LRSD to implement following three 

policies: 
Limiting the processors : As mentioned previously, an 

LRSD can only be installed on a secure processor if and only 
if the user constructs a secure vector for that processor. 
Otherwise the processor cannot get KLRSD, and thus has no 
way to decrypt the data or code. Therefore, a user can control 
the list of processors that is capable to access LRSD by 
generating corresponding secure vectors for each processor. 

Limiting the access times: Since the data of an LRSD is 
only accessible to its own code, the user can add a counter in 
the accessing code. As long as the code is executed, it 
increases the counter. When the counter has expired some 
threshold, the code will deny any further accessing. In order 
to keep the counter persistent, the processor will save the 
counter inside the LRSD, with the process similar to extend 
memory writing. Thus, even an attack use another secure 
vector to run the code on another processor after counter 
expiration, he still cannot access the data. 

Limiting the period of accessing: When accessing the 
data in LRSD, the corresponding code can get the current 
time and check whether it is within a certain period. If the 
time is without the period, then it could deny any access. In 
order to ensure that the timestamp is not faked, the code 
should embed a public key of a trusted time server, and send 
a nonce to prevent replay attack. Each time when it gets a 
timestamp, it sends the nonce to the trusted time server, who 
will sign the timestamp as well as the nonce. In this way, the 
freshness of the timestamp could be ensured. 

 
Figure 2.  The time server protocol 

 

IV. USAGE CASES OF LRSD 

This section describes two potential usage cases of LRSD. 
The first one is using a secure coupon system and the second 
one is using a secure declassification of a secure. 

A. Securing Coupons using LRSD 

Providing coupon is a popular means for merchants to 
spread their services or goods. However, under a cloud-
based e-commerce web-site, the server managing coupons 
may be tampered with by a cloud operator in order to gain 
financial advantages by providing unlimited coupons with 
significant lower prices to end users. For example, several 
mobile network operators have faced issues that some 
internal operators collude together to sell unlimited internet 
access coupons to end users, causing financial loss in the 
companies. Using LRSD, a network operator can secure the 
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coupon distribution by encapsulating the coupon decision 
code and the coupon list as LRSDs. As the secure processor 
will faithfully enforce the access policies of the coupon data, 
even a cloud operator cannot tamper with LRSDs. 

B. Secure Data Declassification 

Listed companies usually need to regularly disclose their 
financial data to the public, which sometime will incur 
significant impact over the stock market. It has long been an 
issue that some insiders can get the financial data earlier than 
the supposed date. These insiders can leverage such data to 
take action on the stock market to make money. A potential 
approach to mitigating such issue is that the regulation 
officers can request the chief financial officer in listed 
companies to encapsulate their data using LRSD and specify 
that the LRSD can only be accessed after the disclosure date. 
By this means, even if the financial data encapsulated using 
LRSD will be spread across different parts, they cannot 
access such data before the designated date. 

V. CONCLUSION 

This paper analyzed the security threats of commodity 
cloud platforms. To address low trustworthiness due to 
unbounded trusted computing base, this paper proposed 
lease-regulated secret data (LRSD for short) that 
encapsulated secret data together with the code as well as 
access policies together. To ensure the security of LRSD, 
this paper also described a secure processor design with 
cryptographic logic and policy enforcement engine. Using 
two compelling cases, this paper demonstrated the potential 
usefulness of LRSD. 
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