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Abstract
Conditional symmetry of the nonlinear gas filtration equation is studied. The opera-
tors obtained enabled to constract ansatzes reducing this equation to ordinary diffe-
rential equations and to obtain its exact solutions.

In describing filtration processes of gas, the following nonlinear equation is widely used [1]

∂v

∂x0
+

∂2ϕ(v)
∂x2

1

+
N

x1

∂ϕ(v)
∂x1

= Φ(v), (1)

where v = v(x), x = (x0, x1) ∈ R2, N = const, ϕ(v),Φ(v) are given smooth functions.
Substitution u = ϕ(v) reduces equation (1) to the equivalent equation

H(u)u0 + u11 +
N

x1
u1 = F (u), (2)

where u0 =
∂u

∂x0
, u1 =

∂u

∂x1
, u11 =

∂2u

∂x2
1

.

Lie symmetry of equation (2) under N = 0 was studied in [2,3] and its conditional
symmetry was studied in [4, 5].

In present paper we study conditional symmetry of equation (2) with N 6= 0. Opera-
tors of conditional symmetry are used to construct ansätze which reduce (2) to ordinary
differential equations (ODE). By means of this method we obtain exact solutions of equa-
tions (2) and then exact solutions of a multidimensional nonlinear heat equation. Below
we will use terms and definitions given in [4, 5].

Theorem 1 Equation (2) is Q-conditionally invariant under the operator

Q = A(x, u)∂0 + B(x, u)∂1 + C(x, u)∂u, (3)

if f functions A,B, C satisfy the following system of equations:
Case I. A 6= 0 (without loss of generality one can put A = 1),

Buu = 0, Cuu = 2
(

B1u + HBBu −
N

x1
Bu

)
,

3BuF = 2(c1u + HBuC)−
(

HB0 + B11 −
N

x1
B1 +

N

x2
1

B + 2HBB1 + ḢBC

)
,

CḞ − (Cu − 2B1)F = HC0 + C11 +
N

x1
C1 + 2HCB1 + ḢC2;

(4)
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Case II. A = 0, B = 1,

CḞ −
(

Cu +
Ḣ

H
C

)
F = HC0 + C11 +

N

x1
C1 −

N

x2
1

C + 2CC1u + C2Cuu−

C
Ḣ

H

(
CCu + C1 +

N

x1
C

)
.

(5)

In formulas (4), (5) and everythere below, subscripts mean differentiation with respect to
corresponding arguments.

To prove the theorem one should use the method described in [4, 5].
To find the general solution of equations (4), (5) is impossible, but we succeeded in

obtaining several partial solutions. The list of reduction is present in the Table.

H(u) F (u) Operator Q Ansätz Reduced eq.

λ1u
2

1−N + λ2 λ3u
3−N
1−N λ2x

2
1∂0 + (3−N)× u = x1−N

1 ϕ(ω), λ
2

1−N
1
λ2

ϕ̇ + ϕ̈
(N−3)2

λ2 6= 0 N 6= 1; 3 x1∂1 + (3−N)× ω = x0
λ2

+ x2
1

2(N−3) = λ3ϕ
3−N
1−N

×(1−N)u∂u
λ1
u , N = 3 λ3 x2

1∂0 + x1∂1− u = x−2
1 ϕ

(
x0 −

x2
1
2

)
λ1

ϕ̇
ϕ + ϕ̈ = 3

2u∂u

λ1e
u + λ2 λ3e

u λ2x
2
1∂0 + 2x1∂1+ u = ϕ(ω) + 2 lnx1,

λ1
λ2

eϕϕ̇ + 1
4 ϕ̈ =

λ2 6= 0 N = 1 +4∂u ω = x0
λ2
− x2

1
4 = λ3e

ϕ

λ1
W 2 (N−
−WẄ

Ẇ 2 )

λ2

WẆ
(N−

−WẄ
Ẇ 2 )

x1∂1 + W
Ẇ

∂u W (u) = x1ϕ(x0) λ1ϕ̇ = λ3ϕ− ϕ3

W (u),
N 6= −1

λ1ω + λ2,
λ2 6= 0

∂1 + λ2
N+1x1∂u u = ϕ(x0)−

λ2x2
1

2(N+1) ϕ̇ = λ1

W (u),
N = −1

λ1W (u) ∂1 + λ3x1∂u u = ϕ(x0) + λ3
x2
1
2 ϕ̇ = λ1

1 λ3u lnu ∂1 + λ3
2 x1u∂u u = ϕ(x0)e

λ3x2
1

4 ϕ̇ + λ3
N+1

2 ϕ =
= λ3ϕ lnϕ

Theorem 2 Equation (2) is Q-conditionally invariant under operator (3) with H(u) =
1, A = 1, B0 6= 0 if f it is locally equivalent to the equation

u0 + u11 +
3

2x1
u1 = λu3 (λ = const), (6)

and in this case operator (3) takes the form

Q = ∂0 +
3
2

(√
2λu +

1
x1

)
∂1 +

3
4
u

(
2λu2 − 1

x2
1

)
∂u. (7)

To prove the theorem, one has to solve equations (4) under H(u) = 1, B(u) 6= 0. By means
of operator (7) we construct an implicit ansatz

15

(
x0 −

x2
1

3

)
ω + 4

√
2λx

5
2
1 = ϕ(ω), ω =

1 +
√

2λux1

u
√

x1
(8)
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which reduces equation (6) to the ODE. Having solved the latter and taking into account
(8), we obtain the following solution of equation (6), u(x0, x1) being a new solution:

15

(
x0 −

x2
1

3

)
ω + 4

√
2λx

5
2
1 = ϕ(ω), ω =

1 +
√

2λux1

u
√

x1
(c1 = const). (9)

All inequivalent ansätze of the Lie type are given by one of the formulae

u = ϕ(x1), u = x
− 1

2
0 ϕ(x

− 1
2

0 x1). (10)

It is obvious that (9) does not belong to (10).
The above solutions of equation (6) can be multiplied by means of formulae generating

solutions by using the Lie symmetry:

u(x0, x1) = θ1f(θ2
1x0 + θ0, θ1, x1), (11)

where θ0, θ1 are group parameters, F (x0, x1) is a known solution of equation (6), u(x0, x1)
is a new solution.

Theorem 3 Equation

1
u

u0 + u11 +
N

x1
u1 =

1
u

(λ1u + λ2)(λ1, λ2 − const) (12)

is Q-conditionally invariant under the operator

Q = ∂0 + (N + 1)
u

x1
∂1 + (λ1u + λ2)∂u. (13)

Proof. To prove Theorem, it is sufficient to show that the following relation holds true

Q̃S = λ̃1S + λ̃2Qu, (14)

where

S =
1
u

u0 + u11 +
N

x1
u1 −

1
u

(λ1u + λ2), Qu = u0 + (N + 1)
u

x1
u1 − (λ1u + λ2),

Q̃ is a corresponding prolongation of the operator Q, λ̃1, λ̃2 are some functions.
On acting the operator Q̃ on S we get after rather tedious calculations

Q̃S =
[
λ1 +

N + 1
x2

1

(2u + 3x1u1)
]
S −

[
N + 1
x1u

u1 −
N + 1
x2

1u
(2u + 3x1u1)−

λ1u + λ2

u2

]
Qu.

So, Theorem is proved.
Operator (13) results in the ansatz

x2
1

2(N + 1)
−
∫

udu

λ1u + λ2
= ϕ(ω), ω = x0 −

∫
du

λ1u + λ2
, (15)

which reduces equation (12) to the ODE

−ϕ̈ = λ1ϕ̇ + λ2. (16)
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Note that substituting x1 → r =
√

x2
1 + x2

2 + . . . + x2
n and putting N = n− 1, we find

that equation (2) coincides with the reduced nonlinear heat equation

H(u)u0 + ∆U = F (u), (17)

where u = u(x0, ~x),∆ =
∂2

∂x2
1

+ . . . +
∂2

∂x2
n

. Equation (17) is reduced to (2) by means

of the O(n) – invariant ansätz u = u(x0, r). Therefore, many results obtained above for
equation (2) can be used straightforwardly for finding operators of conditional symmetry
and corresponding solutions of multidimensional equation (19). We summarize them in
the following statement.

Theorem 4 Nonlinear heat equation (17) is Q-conditionally invariant under the set of
operators AO(n), Q if:

1) H(u) = λ1u
2

2−n + λ2, F (u) = λ3u
4−n
2−n ,

Q = λ2~x
2∂0 + (4− n)xa∂a + (4− n)(2− n)u∂u, λ2 6= 0, n 6= 2; 4;

2) H(u) =
λ1

u
, F (u) = λ3, Q = ~x2∂0 + xa∂a − 2u∂u, n = 4;

3) H(u) = λ1 expu + λ2; F (u) = λ3 expu,

Q = λ2~x
2∂0 + 2xa∂a + 4∂u, n = 2, λ2 6= 0;

4) H(u) = 1, F (u) = λ3u lnu, Q = xa∂a +
λ3

2
~x2u∂u;

5) H(u) =
1
u

, F (u) =
1
u

(λ1u + λ2), Q = ∂0 +
n

~x2
uxa∂a + (λ1u + λ2)∂u.
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