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Abstract—To solve the problem that VMM cannot monitor and 

control Guest OS system call instructions due to their non-

trapping property, this paper propose an idea that make these 

instructions trap into VMM through breaking their normal 

execution conditions so as to cause exception. As to the three 

different system call mechanisms in the x86 architecture, we 

make software interrupt and sysenter based system calls trap 

into VMM through causing GP exception trap, while syscall 

trap into VMM through causing UD exception trap,  and then 

identify them with the vcpu context information corresponding 

to the exception trap. The Qemu&Kvm based prototype 

indicates that VMM can successfully intercept and identify all 

the three system call behaviors coming from Guest OS, and the 

performance overhead is within an accepted range for normal 

applications. For example, in unixbench shell test case, the 

performance overhead ratio ranges from 1.900 to 2.608.  
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I.  INTRODUCTION  

Virtualization technology has been widely used in the IT 

security field[1], most often, they need effective capabilities 

to monitor Guest OS behaviors and its state within VMM[6-

9]. Generally, when a sensitive instruction is executing in 

Guest OS, it will be trapped into VMM, then with the 

knowledge of hardware architecture and Guest OS software 

convention, VMM can distill more useful information from 

these events[2,3,10]. However, there always exist some 

instructions related to specific behaviors  that cannot 

directly trap into VMM because of their non-sensitive 

property[4]. For example, the x86 system call instruction  is 

just a case in point[2]. As a result, it is difficult to monitor 

these behaviors within VMM. 

In order to solve the above problems,  the basic idea of 

current research is to replace the non-trapping instruction 

with the sensitive trapping instruction
 
[5]. For example, the 

Guest OS code injection method requires a sensitive 

trappable code segment be injected into the specific location 

of Guest OS; Double instruction swapping method needs 

two traps - two VMCALLs  were performed and the guest 

OS's default handler was modified frequently. The common 

requirement of these two methods is that they both need 

modifying Guest OS; therefore the portability is pool and 

also is not transparent to Guest OS.  
In this paper, we explored how to intercept and identify 

the three different non-trapping system call instructions of 
x86 architecture from Guest OS within VMM without any 
modifications to Guest OS, making software interrupt and 
sysenter based system calls trap into VMM through causing 
GP exception, while syscall instruction trap into VMM 
through causing UD exception, and then identify them with 
the VCPU context information corresponding to the 
exception trap. 

The evaluation of the Qemu&Kvm based prototype 
demonstrates that VMM can successfully intercept and 
identify all the three system call mechanisms, and in normal 
condition, the performance overhead is within the acceptable 
range. For example, in unixbench shell test case, the 
performance overhead ratio ranges from 1.900 to 2.608.  
This provides a new method for VMM to monitor the Guest 
OS process level behavior. 

II. THE INTERCEPTION AND IDENTIFICATION OF SYSTEM 

CALL INSTRCTION WITHIN VMM 

In the evolution of x86 architecture, there have been three 

kinds of system call mechanisms: software interrupt based, 

sysenter instruction based and syscall instruction based 

methods.  Generally, without special treatment, these system 

calls cannot be automatically trapped into VMM.  

A. Mechanism 1: Software Interrupt Based Method 

In the x86 architecture, interrupt handling is through the 

interrupt description table (IDT). When an interrupt occurs, 

the hardware will find the handler from IDT indexed by the 

vector number.  In virtualized environment, Intel VT-x only 

allow the system interrupts (vector number from 0 to 31) to 

be automatically trapped into VMM, and the user interrupts 

(vector number from 32 to 255) that can be used to 

implement system call cannot be trapped directly.  

To make the software interrupt based mechanism trap into 

VMM, the solution relies on setting the limit field. When 

the limit is set to 32, all system interrupts are not influenced, 

but all the user interrupts (>31) will lead to GP exception. 

Thereafter, VMM needs to discern this kind of GP exception 
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from the normal one.  If belonging to the normal case, it will 

be forwarded to Guest OS directly; otherwise, it will be a 

user interrupt and need to collect more information for 

further handling. Figure 1 demonstrates the mechanism. 
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Figure 1 Software Interrupt Based System Call Interception 

B. Mechanism 2: Sysenter Instruction Based Method 

Sysenter instruction based system call mechanism 

depends on a set of MSRs，that is SYSENTER_CS_MSR, 

SYSENTER_ESP_MSR and SYSENTER_EIP_MSR, they 

all together represent the entry address information of 

system calls. When the application in the Guest OS executes 

sysenter instruction, the system will load the values stored 

in these MSRs which represent the system call entry in 

Guest OS.  So it needs no intervention from VMM and 

VMM cannot realize the required controls directly. To make 

sysenter instruction trap, it should create a contrived 

environment. The solution is to write a set of invalid values 

(such as null) to MSRs, and then it will cause GP exception. 

Therefore, after saving the old MSRs values and loading a 

set of null values into these MSRs will cause the sysenter 

trap into VMM, then VMM will discern the contrived case 

from the normal case with vcpu context information. If it is 

a normal GP exception, VMM will direct it to the Guest OS, 

otherwise it will be regarded as sysenter system call, so it 

needs collecting further information to process and use the 

previous saved MSRs to return to Guest OS. Figure 2 

illustrates this idea. 
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Figure 2 Sysenter based Interception and Identification 

C. Mechanism 3: Syscall Instruction Based 

Syscall instruction based system call mechanism also 

depends a set of MSRs ，  that is STAR_MSR, 

CSTAR_MSR and LSTAR_MSR, which registers are used 

depends on what mode of Guest OS is running in. Normally 

syscall cannot directly trap into VMM, so it is difficulty for 

VMM to implement controls.  The solution here is to set the 

SCE flag value in EFER register. When it is set to 0, the 

syscall will UD exception trap, while set to 1 it will not. 

When detecting an UD exception trap in VMM, with the 

current vcpu context information, the VMM can identify the 

syscall instruction. If in normal case, the UD exception will 

direct to Guest OS, otherwise, it will collect related data and 

simulate the required effects, then return to Guest OS.  
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Figure 3 syscall based instruction system call interception and 

identification  

III. THE PROTOTYPE SYSTEM 

To verify and evaluate the purposed methods, we have 

implemented a prototype on Qemu&Kvm VMM.  Figure 4 

illustrates the prototype system architecture. It includes three 

main modules: Qemu Monitor user control module, KVM 

extension module and user mode application netlinkclient. 

The Qemu Monitor user control module provides the user 

with an interface to issue commands to the KVM extension 

module. These commands include enabling and disabling 

system call interception mechanisms, adding or deleting 

system call processing rules and etc.  

The KVM extension module implements the system call 

interception, identification and processing functionality in 

response to commands from the Qemu Monitor user control 

module. Besides, it also includes an output service for 

displaying system call processing results through a netlink, 

which is then read by the user mode application netlinkclient.  
The netlink-based user mode application netlinkclient is 

responsible for reading the information produced by the 
KVM extension output service.  

Native Linux Kernel

KVM Kernel Module

KVM Exetentio

Qemu Monitor
user control

Guest OS Kernel(Linux)

System Call 
Interception

System Call 
Identificat

ion

System Call 
Handling 
Rules

System Call 
Information 
Handling

Qemu-Kvm

Linux Native 
Application

netlinkclient

ioctlà/dev/kvm

netlink

start_scmon,
stop_scmon,

add_scmon_rule,
……

Guest Application

interrupt/sysenter/sysca
ll trapping

netlinkclient

 
Figure 4  The Prototype System Architecture 
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IV. EVALUATION 

We evaluated the functional correctness and performance 

overheads of the three system call mechanisms. All 

experiments are done on a platform with Intel i7 930 and 12 

GB memory. The host and guest operating system for 

software interrupt and sysenter based methods adopt the  32  

bit Fedora 13, while the syscall selects 64 bit Fedora 13. 

VMM chosen are Qemu-Kvm 0.13 and KVM 2.6.38-rc7. 

A. Functional Verification 

Table 1 gives different Qemu&Kvm virtual machine  

startup methods for testing the three system call 

mechanisms. Among them, the sysenter method needs 

adding –cpu qemu64, model=3 option parameter so as to 

make  Guest OS think that it is running on a hardware which  

choose sysenter syscall mechanism. 

 
System Call Mode Qemu&Kvm Virtual Machine Startup Methods 

Interrupt Based  #qemu –hda fedora13-x86-32.img –m 1024 –
monitor stdio 

Sysenter Based  #qemu –cpu qemu64,model=3 –hda fedora13-

x86-32.img –m 1024 –monitor stdio 

Syscall Based #qemu-system-x86_64 fedora13-x86-64.img –m 
1024 –monitor stdio 

Table 1 Three System Call Start Methods 

 

For simplicity, here we only select the software 

interrupt based type as an example to illustrate the basic 

operation steps and demonstrate the functional correctness 

of the above discussed methods: 

1， In the Linux shell command line, input the following 

command, startup the Qemu&Kvm virtual machine. In 

this way, the Guest OS will automatically select the 

software interrupt based mechanism.  
#qemu –hda fedora13-x86-32.img –m 1024 –monitor stdio 

2， After the virtual machine startup, switch to the Qemu 

Monitor and input the command add_scmon_rule to 

add the system call handling rule, for example:  
(qemu)add_scmon_rule rax 3 any 0 hex 

When rax is set to 3, it represents the read system call 

in Linux; any 0 refers to output all general register s 

values, and hex means output format in hex style.   

3， After step 2, the next is to enable the mechanism with 

command start_scmon, 128 is the vector number used by 

system call in Linux: 
(qemu)start_scmon 128 rax 

4， Finally, VMM can intercept the system call behaviors 

occurred in Guest OS and process them according to the 

rules set in step 2 and continue  sending the results to 

the netlink from which the user mode application 

netlinkclient can read and output to the user. 
#netlinkclient 

Besides the differences in Step 1, Sysenter instruction 

and Syscall instruction based methods have similar steps. 

Figure 5 shows the snapshot of all the three mechanisms; It 

includes the Qemu Monitor command window and the 

outputs of the three mechanisms from netlinkclient. The 

outputs are: “syscall mode: interrupt based”, “syscall mode: 

sysenter based” and “syscall mode: syscall based”.  The 

results demonstrate that all the three mechanisms can be 

successfully intercepted and identified within VMM, the 

methods described in Section III have been verified. 

Interrupt based

sysenter based

syscall based

Qemu Monitor

 
Figure 5 The Running Snapshots of three system call interception and 

identification 

B. Performance Overhead 

As to the performance overhead evaluation, we select 

three test cases from unixbench: syscall, arithmetic and 

shell.  When the test case syscall is executing, it is just a 

system call loop and belongs to an extreme case; 

arithmetic is another extreme case, because it mainly 

does computing task with almost no system call 

behaviors, so it can be seen as the opposite of syscall test 

case; The last case is shell which sits in between the 

above two cases and can be considered as the normal 

application case.   
The following experimental results are all collected 

from the test cases running in Guest OSes. Every table 
includes three different performance overhead ratio 
which refers to the ratio of performance before and after 
enabling system call interception. For example in table 2, 
the syscall test case is 538 before enabling and 38.9 after 
enabling, so the performance overhead ratio is 
13.830=538/38.9. 

 
Guest OS Disable 

Interception 

Disable 

Interception 

Performance 

Overhead Ratio 

Interrupt Based  538 38.9 13.830 

Sysenter Based  1245.3 12.4 100.427 

Syscall Based 1229.9 20.3 60.586 

Table 2 syscall 

 

75



Guest OS Disable 

Interception 

Disable 

Interception 

Performance 

Overhead Ratio 

Interrupt Based  1203.3 633.3 1.900 

Sysenter Based  1238.8 475.0 2.608 

Syscall Based 1213.3 552.8 2.195 

Table 3 shell 

Guest OS Disable 

Interception 

Disable 

Interception 

Performance 

Overhead Ratio 

Interrupt Based  545.2 545.3 0.9998 

Sysenter Based  548.1 548.0 1.0002 

Syscall Based 635.2 634.2 1.0016 

Table 4 arithmetic 

The performance overhead ratio results of the syscall test 

case in Table 2 for software interrupt、sysenter and syscall 

are 18.830 、 100.427 and 60.586 separately. This 

demonstrates that the system call interception within VMM 
will bring a huge overhead. However, it is an extreme case 
because it is just executing a system call loop. Besides, 
sysenter has the biggest overhead, the main reason is that it 
not only adds the interception overhead, but also adds extra 
simulation overhead. Table 3 can be regarded as the normal 
and real application case; the results are 1.900, 2.608, 2.195. 
It suggests that in practical applications, the system call 
interception doesn’t bring performance degradation in 
magnitude because there are not so much proportional 
system call instructions compared to all other instructions. 
Actually, it is within an accepted range; Table 4 is another 
extreme case, almost no system calls done when executing,  
this time, the  performance overhead ratio is nearly 1, it is in 
line with the expectations. 

V. CONCLUSIONS 

In virtualized computer system, the key mechanism of 
getting Guest OS internal events is by the automatic trapping 
property of sensitive instruction executing in Guest OS.  
However, there always exist some instructions that cannot 
trap into VMM directly because of their non-sensitive 
property. As a result, it is difficult to monitor these behaviors 
within VMM. To handle this problem effectively, based on 
the convention of hardware and software, the paper proposes 
an idea that makes the non-trapping instructions trap through 
breaking their normal execution conditions so as to make it 
cause exception trap. Compared to the existing methods, it 
has the advantages of Guest OS transparent and doesn’t need 
any modifications to Guest OS. Based on this idea, the paper 
specially explored how to intercept and identify the three 
different system call instructions of x86 architecture 
comming from Guest OS within VMM. The evaluation of 
the Qemu&Kvm based prototype demonstrates that VMM 
can successfully intercept and identify all the three system 
call mechanisms, and in normal cases, the performance 
overhead is within an acceptable range. Although the paper 
only exemplifies the application with system call instructions, 
it also applies to other similar environments. Besides, the 
prototype implements only a framework for system call 

interception and identification facility, in the future, we plan 
to extend it with practical application. As such, it would be 
feasible to monitor the Guest OS process level information 
outside virtual machines. 
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