

The Architectural Based Interception and Identification of System Call Instruction

within VMM

Haiquan Xiong
1,2

1
State Key Laboratory of Computer Architecture,

Institute of Computing Technology, Chinese Academy

of Sciences
2
University of Chinese Academy of Sciences

Beijing, China

xionghaiquan@ict.ac.cn

Zhiyong Liu
1

1
State Key Laboratory of Computer Architecture,

Institute of Computing Technology, Chinese Academy

of Sciences

Beijing, China

zyliu@ict.ac.cn

Abstract—To solve the problem that VMM cannot monitor and

control Guest OS system call instructions due to their non-

trapping property, this paper propose an idea that make these

instructions trap into VMM through breaking their normal

execution conditions so as to cause exception. As to the three

different system call mechanisms in the x86 architecture, we

make software interrupt and sysenter based system calls trap

into VMM through causing GP exception trap, while syscall

trap into VMM through causing UD exception trap, and then

identify them with the vcpu context information corresponding

to the exception trap. The Qemu&Kvm based prototype

indicates that VMM can successfully intercept and identify all

the three system call behaviors coming from Guest OS, and the

performance overhead is within an accepted range for normal

applications. For example, in unixbench shell test case, the

performance overhead ratio ranges from 1.900 to 2.608.

Keywords- Guest OS;VMM;Virtualization; System Call

I. INTRODUCTION

Virtualization technology has been widely used in the IT

security field[1], most often, they need effective capabilities

to monitor Guest OS behaviors and its state within VMM[6-

9]. Generally, when a sensitive instruction is executing in

Guest OS, it will be trapped into VMM, then with the

knowledge of hardware architecture and Guest OS software

convention, VMM can distill more useful information from

these events[2,3,10]. However, there always exist some

instructions related to specific behaviors that cannot

directly trap into VMM because of their non-sensitive

property[4]. For example, the x86 system call instruction is

just a case in point[2]. As a result, it is difficult to monitor

these behaviors within VMM.

In order to solve the above problems, the basic idea of

current research is to replace the non-trapping instruction

with the sensitive trapping instruction

[5]. For example, the

Guest OS code injection method requires a sensitive

trappable code segment be injected into the specific location

of Guest OS; Double instruction swapping method needs

two traps - two VMCALLs were performed and the guest

OS's default handler was modified frequently. The common

requirement of these two methods is that they both need

modifying Guest OS; therefore the portability is pool and

also is not transparent to Guest OS.
In this paper, we explored how to intercept and identify

the three different non-trapping system call instructions of
x86 architecture from Guest OS within VMM without any
modifications to Guest OS, making software interrupt and
sysenter based system calls trap into VMM through causing
GP exception, while syscall instruction trap into VMM
through causing UD exception, and then identify them with
the VCPU context information corresponding to the
exception trap.

The evaluation of the Qemu&Kvm based prototype
demonstrates that VMM can successfully intercept and
identify all the three system call mechanisms, and in normal
condition, the performance overhead is within the acceptable
range. For example, in unixbench shell test case, the
performance overhead ratio ranges from 1.900 to 2.608.
This provides a new method for VMM to monitor the Guest
OS process level behavior.

II. THE INTERCEPTION AND IDENTIFICATION OF SYSTEM

CALL INSTRCTION WITHIN VMM

In the evolution of x86 architecture, there have been three

kinds of system call mechanisms: software interrupt based,

sysenter instruction based and syscall instruction based

methods. Generally, without special treatment, these system

calls cannot be automatically trapped into VMM.

A. Mechanism 1: Software Interrupt Based Method

In the x86 architecture, interrupt handling is through the

interrupt description table (IDT). When an interrupt occurs,

the hardware will find the handler from IDT indexed by the

vector number. In virtualized environment, Intel VT-x only

allow the system interrupts (vector number from 0 to 31) to

be automatically trapped into VMM, and the user interrupts

(vector number from 32 to 255) that can be used to

implement system call cannot be trapped directly.

To make the software interrupt based mechanism trap into

VMM, the solution relies on setting the limit field. When

the limit is set to 32, all system interrupts are not influenced,

but all the user interrupts (>31) will lead to GP exception.

Thereafter, VMM needs to discern this kind of GP exception

International Workshop on Cloud Computing and Information Security (CCIS 2013)

© 2013. The authors - Published by Atlantis Press 73

from the normal one. If belonging to the normal case, it will

be forwarded to Guest OS directly; otherwise, it will be a

user interrupt and need to collect more information for

further handling. Figure 1 demonstrates the mechanism.

system
int

……

user int

31

0

255

32

IDTR

Limit
（32）

IDT Ptr

system
int

……

user int

31

0

255

32

IDTR

Limit
（256）

IDT Ptr

int x(x>=32) vector number
with the limit, cannot

result trap

int x(x>=32)，vector number
over the limit，causing GP

exception trap

Figure 1 Software Interrupt Based System Call Interception

B. Mechanism 2: Sysenter Instruction Based Method

Sysenter instruction based system call mechanism

depends on a set of MSRs，that is SYSENTER_CS_MSR,

SYSENTER_ESP_MSR and SYSENTER_EIP_MSR, they

all together represent the entry address information of

system calls. When the application in the Guest OS executes

sysenter instruction, the system will load the values stored

in these MSRs which represent the system call entry in

Guest OS. So it needs no intervention from VMM and

VMM cannot realize the required controls directly. To make

sysenter instruction trap, it should create a contrived

environment. The solution is to write a set of invalid values

(such as null) to MSRs, and then it will cause GP exception.

Therefore, after saving the old MSRs values and loading a

set of null values into these MSRs will cause the sysenter

trap into VMM, then VMM will discern the contrived case

from the normal case with vcpu context information. If it is

a normal GP exception, VMM will direct it to the Guest OS,

otherwise it will be regarded as sysenter system call, so it

needs collecting further information to process and use the

previous saved MSRs to return to Guest OS. Figure 2

illustrates this idea.

Guest OS

 Guest Application

sysenter

VMM

system call

handler entry

When Setting the

SYSENTER_CS_MSR to
a Set of Valid

Values

Guest OS

 Guest Application

sysenter

VMM

system call

handler entry

GP Exception

Trap Handler

When Setting
SYSENTER_CS_MSR to

Invalid Values NULL

Figure 2 Sysenter based Interception and Identification

C. Mechanism 3: Syscall Instruction Based

Syscall instruction based system call mechanism also

depends a set of MSRs ， that is STAR_MSR,

CSTAR_MSR and LSTAR_MSR, which registers are used

depends on what mode of Guest OS is running in. Normally

syscall cannot directly trap into VMM, so it is difficulty for

VMM to implement controls. The solution here is to set the

SCE flag value in EFER register. When it is set to 0, the

syscall will UD exception trap, while set to 1 it will not.

When detecting an UD exception trap in VMM, with the

current vcpu context information, the VMM can identify the

syscall instruction. If in normal case, the UD exception will

direct to Guest OS, otherwise, it will collect related data and

simulate the required effects, then return to Guest OS.

Guest OS

 Guest Application

syscall

VMM

system call

handler entry

STAR_MSR，
CSTAR_MSR...

Guest OS

 Guest Application

syscall

VMM

system call

handler entry

UD Exception

Trap Handler

STAR_MSR，
CSTAR_MSR...

Hardware(EFER.SCE=1) Hardware(EFER.SCE=0)

Figure 3 syscall based instruction system call interception and

identification

III. THE PROTOTYPE SYSTEM

To verify and evaluate the purposed methods, we have

implemented a prototype on Qemu&Kvm VMM. Figure 4

illustrates the prototype system architecture. It includes three

main modules: Qemu Monitor user control module, KVM

extension module and user mode application netlinkclient.

The Qemu Monitor user control module provides the user

with an interface to issue commands to the KVM extension

module. These commands include enabling and disabling

system call interception mechanisms, adding or deleting

system call processing rules and etc.

The KVM extension module implements the system call

interception, identification and processing functionality in

response to commands from the Qemu Monitor user control

module. Besides, it also includes an output service for

displaying system call processing results through a netlink,

which is then read by the user mode application netlinkclient.
The netlink-based user mode application netlinkclient is

responsible for reading the information produced by the
KVM extension output service.

Native Linux Kernel

KVM Kernel Module

KVM Exetentio

Qemu Monitor
user control

Guest OS Kernel(Linux)

System Call
Interception

System Call
Identificat

ion

System Call
Handling
Rules

System Call
Information
Handling

Qemu-Kvm

Linux Native
Application

netlinkclient

ioctlà/dev/kvm

netlink

start_scmon,
stop_scmon,

add_scmon_rule,
……

Guest Application

interrupt/sysenter/sysca
ll trapping

netlinkclient

Figure 4 The Prototype System Architecture

74

IV. EVALUATION

We evaluated the functional correctness and performance

overheads of the three system call mechanisms. All

experiments are done on a platform with Intel i7 930 and 12

GB memory. The host and guest operating system for

software interrupt and sysenter based methods adopt the 32

bit Fedora 13, while the syscall selects 64 bit Fedora 13.

VMM chosen are Qemu-Kvm 0.13 and KVM 2.6.38-rc7.

A. Functional Verification

Table 1 gives different Qemu&Kvm virtual machine

startup methods for testing the three system call

mechanisms. Among them, the sysenter method needs

adding –cpu qemu64, model=3 option parameter so as to

make Guest OS think that it is running on a hardware which

choose sysenter syscall mechanism.

System Call Mode Qemu&Kvm Virtual Machine Startup Methods

Interrupt Based #qemu –hda fedora13-x86-32.img –m 1024 –
monitor stdio

Sysenter Based #qemu –cpu qemu64,model=3 –hda fedora13-

x86-32.img –m 1024 –monitor stdio

Syscall Based #qemu-system-x86_64 fedora13-x86-64.img –m
1024 –monitor stdio

Table 1 Three System Call Start Methods

For simplicity, here we only select the software

interrupt based type as an example to illustrate the basic

operation steps and demonstrate the functional correctness

of the above discussed methods:

1， In the Linux shell command line, input the following

command, startup the Qemu&Kvm virtual machine. In

this way, the Guest OS will automatically select the

software interrupt based mechanism.
#qemu –hda fedora13-x86-32.img –m 1024 –monitor stdio

2， After the virtual machine startup, switch to the Qemu

Monitor and input the command add_scmon_rule to

add the system call handling rule, for example:
(qemu)add_scmon_rule rax 3 any 0 hex

When rax is set to 3, it represents the read system call

in Linux; any 0 refers to output all general register s

values, and hex means output format in hex style.

3， After step 2, the next is to enable the mechanism with

command start_scmon, 128 is the vector number used by

system call in Linux:
(qemu)start_scmon 128 rax

4， Finally, VMM can intercept the system call behaviors

occurred in Guest OS and process them according to the

rules set in step 2 and continue sending the results to

the netlink from which the user mode application

netlinkclient can read and output to the user.
#netlinkclient

Besides the differences in Step 1, Sysenter instruction

and Syscall instruction based methods have similar steps.

Figure 5 shows the snapshot of all the three mechanisms; It

includes the Qemu Monitor command window and the

outputs of the three mechanisms from netlinkclient. The

outputs are: “syscall mode: interrupt based”, “syscall mode:

sysenter based” and “syscall mode: syscall based”. The

results demonstrate that all the three mechanisms can be

successfully intercepted and identified within VMM, the

methods described in Section III have been verified.

Interrupt based

sysenter based

syscall based

Qemu Monitor

Figure 5 The Running Snapshots of three system call interception and

identification

B. Performance Overhead

As to the performance overhead evaluation, we select

three test cases from unixbench: syscall, arithmetic and

shell. When the test case syscall is executing, it is just a

system call loop and belongs to an extreme case;

arithmetic is another extreme case, because it mainly

does computing task with almost no system call

behaviors, so it can be seen as the opposite of syscall test

case; The last case is shell which sits in between the

above two cases and can be considered as the normal

application case.
The following experimental results are all collected

from the test cases running in Guest OSes. Every table
includes three different performance overhead ratio
which refers to the ratio of performance before and after
enabling system call interception. For example in table 2,
the syscall test case is 538 before enabling and 38.9 after
enabling, so the performance overhead ratio is
13.830=538/38.9.

Guest OS Disable

Interception

Disable

Interception

Performance

Overhead Ratio

Interrupt Based 538 38.9 13.830

Sysenter Based 1245.3 12.4 100.427

Syscall Based 1229.9 20.3 60.586

Table 2 syscall

75

Guest OS Disable

Interception

Disable

Interception

Performance

Overhead Ratio

Interrupt Based 1203.3 633.3 1.900

Sysenter Based 1238.8 475.0 2.608

Syscall Based 1213.3 552.8 2.195

Table 3 shell

Guest OS Disable

Interception

Disable

Interception

Performance

Overhead Ratio

Interrupt Based 545.2 545.3 0.9998

Sysenter Based 548.1 548.0 1.0002

Syscall Based 635.2 634.2 1.0016

Table 4 arithmetic

The performance overhead ratio results of the syscall test

case in Table 2 for software interrupt、sysenter and syscall

are 18.830 、 100.427 and 60.586 separately. This

demonstrates that the system call interception within VMM
will bring a huge overhead. However, it is an extreme case
because it is just executing a system call loop. Besides,
sysenter has the biggest overhead, the main reason is that it
not only adds the interception overhead, but also adds extra
simulation overhead. Table 3 can be regarded as the normal
and real application case; the results are 1.900, 2.608, 2.195.
It suggests that in practical applications, the system call
interception doesn’t bring performance degradation in
magnitude because there are not so much proportional
system call instructions compared to all other instructions.
Actually, it is within an accepted range; Table 4 is another
extreme case, almost no system calls done when executing,
this time, the performance overhead ratio is nearly 1, it is in
line with the expectations.

V. CONCLUSIONS

In virtualized computer system, the key mechanism of
getting Guest OS internal events is by the automatic trapping
property of sensitive instruction executing in Guest OS.
However, there always exist some instructions that cannot
trap into VMM directly because of their non-sensitive
property. As a result, it is difficult to monitor these behaviors
within VMM. To handle this problem effectively, based on
the convention of hardware and software, the paper proposes
an idea that makes the non-trapping instructions trap through
breaking their normal execution conditions so as to make it
cause exception trap. Compared to the existing methods, it
has the advantages of Guest OS transparent and doesn’t need
any modifications to Guest OS. Based on this idea, the paper
specially explored how to intercept and identify the three
different system call instructions of x86 architecture
comming from Guest OS within VMM. The evaluation of
the Qemu&Kvm based prototype demonstrates that VMM
can successfully intercept and identify all the three system
call mechanisms, and in normal cases, the performance
overhead is within an acceptable range. Although the paper
only exemplifies the application with system call instructions,
it also applies to other similar environments. Besides, the
prototype implements only a framework for system call

interception and identification facility, in the future, we plan
to extend it with practical application. As such, it would be
feasible to monitor the Guest OS process level information
outside virtual machines.

ACKNOWLEDGMENT

This work is in part supported by the National Grand

Fundamental Research 973 Program of China under Grant

No. 2011CB302501, National High-Tech Research &

Development Program of China No. 2012AA010303, the

National Science Foundation for Distinguished Young

Scholars of China under Grant No. 60925009, the National

Natural Science Foundation of China under Grant

No.(61173007，61100013 ， 61100015 and 61202059),

the Key Lab of Computer Architecture Open Projects

CARCH201203 and Huawei Cooperation Projects

YBCB2011030.

REFERENCES

[1] Rosenblum., T.G.a.M., A virtual machine introspection based

architecture for intrusion detection. In Proc. Network and Distributed
Systems Security Symposium, February 2003

[2] Pfoh, J., C. Schneider, and C. Eckert, Exploiting the x86 Architecture
to Derive Virtual Machine State Information, in Proceedings of the
2010 Fourth International Conference on Emerging Security
Information, Systems and Technologies. 2010, IEEE Computer
Society. p. 166-175.

[3] Pfoh, J., C. Schneider, and C. Eckert, A formal model for virtual
machine introspection, in Proceedings of the 1st ACM workshop on
Virtual machine security. 2009, ACM: Chicago, Illinois, USA. p. 1-10.

[4] Popek, G.J. and R.P. Goldberg, Formal requirements for virtualizable
third generation architectures. SIGOPS Oper. Syst. Rev., 1973. 7(4): p.
121.

[5] Prosnitz, B., Blackbox No More:Reconstruction of Internal Virtual
Machine State. 2007.

[6] Onoue, K., Y. Oyama, and A. Yonezawa, Control of system calls from
outside of virtual machines, in Proceedings of the 2008 ACM
symposium on Applied computing. 2008, ACM: Fortaleza, Ceara,
Brazil. p. 2116-1221.

[7] Forrest, S., S. Hofmeyr, and A. Somayaji. The Evolution of System-
Call Monitoring. in Computer Security Applications Conference,
2008. ACSAC 2008. Annual. 2008.

[8] Bo, L., et al. A VMM-Based System Call Interposition Framework for
Program Monitoring. in Parallel and Distributed Systems (ICPADS),
2010 IEEE 16th International Conference on. 2010.

[9] Jiang, X., X. Wang, and D. Xu, Stealthy malware detection and
monitoring through VMM-based "out-of-the-box" semantic view
reconstruction. ACM Trans. Inf. Syst. Secur., 2010. 13(2): p. 1-28.

[10] Jones, S.T., A.C. Arpaci-Dusseau, and R.H. Arpaci-Dusseau, Antfarm:
tracking processes in a virtual machine environment, in Proceedings
of the annual conference on USENIX '06 Annual Technical
Conference. 2006, USENIX Association: Boston, MA. p. 1-1..

76

