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Abstract—By  means  of  strongly  semi-open  L-sets  and  
their inequality, a new form of SS-closedness  is  introduced  
in L- topological spaces,  where L is a  complete  De Morgan  
algebra.  This new form does not depend on the structure of 

basis lattice L and L does not require any distributivity. 
When L is a completely distributive De Morgan algebra, its 
many  characterizations are presented. 

Keywords-L-topology; strongly semi-open L -set; SS-

closedness. 

I.  INTRODUCTION  

    As we know, compactness and its stronger and weaker 
forms play very important roles in general topology. In [1], 
we introduced the concepts of strongly semi-open sets and 
strongly semi-continuous mappings in [0,1]-topological 
spaces. Based on this, in [2], we introduced the concept of 
SR-compactness in L-topological spaces long Wang's [11] 
and Zhao's [13] compactness. In [3], we introduced the 
concept of SS-closedness in L-topological spaces along 
Kudri's compactness in [7]. 

    However, Wang's compactness and Kudri's compactness, 
as well as the SR-compactness and the SS-closedness rely 
on the structure of L and $L$ is required to be completely 
distributive. In [10], by means of open L-sets and their 
inequality, Shi introduced a new definition of fuzzy 
compactness in L-topological spaces, where L is a complete 
de Morgan algebra. This new definition doesn't depend on 
the structure of L . In [4], we introduced the concept of SR-
compactness in L -topological spaces along Shi's 
compactness in [10]. 

    In this paper, following the lines of [10], we'll introduce a 
new form of SS-closedness  in L -topological spaces by 
means of strongly semi-open L -sets and their inequality. It 
is weaker form of SR-compactness. It can also be 
characterized by strongly semi-closed L -sets and their 
inequality. This new form of SS-closedness has many 
characterizations if L is completely distributive De Morgan 
algebra. 

II. PRELIMINARIES 

     Throughout this paper, (L,  ,  , ' ) is a complete De 

Morgan algebra, X a nonempty set. 
XL is the set of all L-

fuzzy sets (or L-sets for short) on X. The smallest element 

and the largest element in 
XL are denoted by  0 and 1. An 

element a in L is called prime element if acb   

implies ab   or ac  . a  in L is called a co-prime element  

if a' is a prime element [6]. The set of nonunit prime 
elements in L is denoted by  P(L). The set of nonzero co-
prime elements in L is denoted by  M(L). 

The binary relation  in L is defined as follows: or 

Lba , , ba  iff for every subset LD  , the relation  

Db sup always implies the existence of  Dd   with 

da   [5]. In a completely distributive De Morgan algebra L, 

each element b is a sup of }|{ baLa  . }|{ baLa   is 

called the greatest minimal family of b  in the sense of 

[8,12], in symbol )(b . Moreover for Lb , define 

     LMbb   , }|{)( baLab    

and . )()()( LPbb   . For La and  XLA , we 

denote 

})(|{)( axAXxA a  , ))}((|{)( xAaXxA a  , 

))}((|{][ xAaXxA a   and })(|{][ axAXxA a  . 

For a subfamily XL ,
)(2 

denotes the set of all finite 

subfamilies of  , and  ][2   denotes the set of all countable 

subfamilies of  . An L-topological space denotes L -ts for 

short. Let ),( X be a weakly induce L -ts, 

La , A .Then )(aA  is an open set in ][ , where ][  is 

the topology formed by all crisp sets in  [8]. 

Let ),( X  be an L -ts and  XLA . Then  A  is called 

a strongly semi-open set iff there is a B such that 
oBAB  , and A  is called a strongly semi-closed set iff 

there is a  B  such that BABo  [1,2], where 
oB and  

B are the interior and closure of B , respectively. The sets  

BBA :{  is strongly semi-open, }AB   and  

BBA :{~   is strongly semi-closed, }AB  are called the 

strong semi-interior and the strong semi-closure of A [1,2], 
respectively. 
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Definition 2.1([4]) Let  ,X  be an L -ts. XLA  is called 

SR-compact if for every family   of strongly  semi-open 

L -sets,  it follows that 

    
 

   





 
















xBxAxBxA

BXxBXx  2

 

Definition 2.2([9,10]) Let  ,X  be an  L -ts, }1{\La  

and  XLA . A family XL  is called 

(1) an a -shading of  A  if for any  Xx , 

      axBxA B   . 

    (2) a strong  a-shading (briefly S-a-shading) of  A if 

        axBxA BXx    . 

    (3) an a-R-neighborhood family (briefly a-R-NF) of  A if 

for any       axBxAXx B  , .  

    (4)a strong  a-R-neighborhood family (briefly S-a-R-NF) 

of  A  if      axBxA BXx    . 

Definition 2.3([9]) Let  ,X  be an L -ts, }0{\La  and  

XLA . A family XL  is called 

     (1) a  a -cover of  A  if for any  Xx , it follows that 

        xBxAa B   . 

     (2) a strong a -cover (briefly S- a -cover) of  A  if 

         xBxAa BXx     

     (3) a  aQ -cover of  A  if for any Xx , it follows that 

      axBxA B   . 

    It is obvious that an S- a -shading of A  is an  a -shading 

of  A , that an S- a -R-NF of A  is an a -R-NF of A , that   

is an S- a -R-NF of A  iff   is an S- a -shading of  A , that 

an S- a -cover of  A  must be a a -cover of  A , and that a  

a -cover of  A  must be a  aQ -cover of  A . 

Lemma 2.4 ([9]) Let L  be a complete Heyting 

algebra, YXf : be a map and YX
L LLf  : is the 

extension of  f  , then for any family YL  

            
















 






xBfxAyByAf L

BXxB
L

Yy 
 

Definition 2.5([2]) Let   ,X  and   ,Y  be two L -ts's. A 

map      ,,: YXf   is called S-irresolute if  BfL
  is 

strongly semi-open in  ,X  for every strongly semi-open 

L  set B  in  ,Y . 

Theorem 2.6 ([2]) A map     ,,: YXf   is S-irresolute 

iff        BfBf LL  for each  YLB . 

III. DEFINITION AND CHARACTERIZATIONS OF SS-

CLOSEDNESS 

Definition 3.1 Let   ,X  be an  L -ts.  XLA  is called 

SS-closed if for every family  of strongly semi-open L -

sets, it follows that 

   
 

    .~

2





















xBxAxBxA

BXxBXx  
 

    Obviously we have the following result. 

    SR-compactness  SS-closedness. 

    That the converse of above need not be true is shown by 
the Example 3.2. 

Example 3.2 Let  X  be an infinite set(or X  be a singleton); 

A  and  C  be two [0, 1]-sets on X defined as 0.6A(x)  , 

for all Xx ; 0.8C(x)  , for all Xx . Take 

},,{ XAo , then    is a topology on X . We easily 

obtain that C is SS-closed. But C  is not SR-compact. 

    From the Definition 3.1, we can obtain the following 
theorem by using quasi-complement. 

Theorem 3.3 Let  ,X  be an L -ts. XLA  is SS-closed 

iff for every family   of strongly semi-closed L-sets, it 

follows that 

       
 

    .
2







 








 


xBxAxBxA

BXxBXx  
 

    From the Definition 3.1 and the Theorem 3.4, we 
immediately obtain the following the result. 

Theorem 3.4 Let   ,X  be an  L -ts and  XLA . Then 

the following conditions are equivalent. 
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 (1) A  is SS-closed. 

(2) For any {1}\L a , each strongly semi-open S- a -

shading   of A  has a finite subfamily   such that 

}|{ ~ BB  is an S- a -shading of  A . 

 (3)For any }0{\La , each strongly semi-closed S- a -R-

NF   of  A has a finite subfamily   such that  

}|{  BB  is  an S- a -R-NF of A . 

Theorem 3.5 If C  is SS-closed and D  is strongly semi-

closed, then DC   is SS-closed. 

 Proof. For any family   of strongly semi-closed L -sets, 

by the Theorem 3.4 we have that  

        

 
   

 
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This shows that DC   is SS-closed. 

Theorem 3.6 Let L  be a complete Heyting algebra. If  

both C  and D  are SS-closed, then DC  is SS-closed. 

Proof. For any family   of strongly semi-closed L -sets, 

by the Theorem 3.4 we have that 

    

       

 
   

 
   

 
    






 















 















 































































xBxDC

xBxD

xBxC

xBxDxBxC

xBxDC

BXx

BXx

BXx

BXxBXx

BXx

















2

2

2

 

This shows that  DC is SS-closed. 

Theorem 3.7 Let L  be a complete Heyting algebra and 

    ,,: YXf   be an S-irresolute map. If A  is an SS-

closed L -set in  ,X , then so is  AfL
  in  ,Y . 

Proof. Suppose that    is a family of strongly semi-closed 

L -sets in  ,Y , by the Lemma 2.4, the Theorem 2.6 and 

SS-closed of  A , we have that 

    

    

   

 
      

 
    

 
     .

2

2

2







 







 








 















































yByAf

xBfxA

xBfxA

xBfxA

yByAf

B
L

Yy

L
BXx

L
BXx

L
BXx

B
L

Yy

















 

Therefore  AfL
  is SS-closed. 

IV. FURTHER PROPERTIES OF SS-CLOSEDNESS 

    In this section, we assume that L  is a completely 
distributive de Morgan algebra. 

Theorem 4.1 Let  ,X  be an L -ts and  XLA . 

Then the following conditions are equivalent. 

    (1) A  is SS-closed. 

    (2) For any }0{\La , each strongly semi-closed S- a -

R-NF  of A  has a finite subfamily   such that 

  BB |  is an a -R-NF (S- a -R-NF) of A . 
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    (3) For any  0\La  and any strongly semi-closed S-

a -R-NF   of $A$, there is a finite subfamily   of   and 

 ab   such that    BB |  is a b -R-NF (an S- b -R-

NF) of A . 

    (4) For any }1{\La , each strongly semi-open S- a -

shading   of A  has a finite subfamily  such that 

 BB |~  is an ( a -shading) S- a -shading of A . 

    (5) For any }1{\La  and any strongly semi-open S- a -

shading   of  A , there is a finite subfamily   of   and  

 ab   such that  BB |~  is a b -shading (an S- b -

shading) of  A . 

    (6) For any  0\La , each strongly semi-open S- a -

cover   of A  has a finite subfamily   such that  

 BB |~  is a  a -cover (an S- a -cover) of  A . 

    (7) For any  0\La   and any strongly semi-open S-

a -cover  of A  , there is a finite subfamily   of  and 

Lb with   ba   such that  BB |~  is a a -cover 

(an S- a -cover) of A . 

    (8)For any  0\La  and any    0\ab  , each 

strongly semi-open aQ -cover   of  A   has a finite 

subfamily   of    such that  BB |~  is a bQ -cover 

of A  . 

    (9) For any  0\La  and any    0\ab   , each 

strongly semi-open aQ -cover    of  A  has a finite 

subfamily  of    such that   BB |~  is a b -cover (an 

S- b -cover) of  A . 

Proof. This is immediate from the Definition 3.1 and the 

Theorem 3.5. 

Lemma 4.2([4]). Let   LX ,  be generated topologically 

by  ,X  . If  A  is a strongly semi-open  L -set in  ,X , 

then A is a strongly semi-open set in   LX , . If  B  is 

a strongly semi-open  L -set in   LX , , then   aB  is a 

strongly semi-open set in   ,X  for every La . 

    Since
~B is the smallest strongly semi-closed L -set 

which contains B  and  
B  is the greatest strongly semi-

open L -set which is contained in B , we can obtain the 
following lemma. 

Lemma 4.3. Let   LX ,  be generated topologically by 

 ,X . Then      bb BB ~~
  for any Lb  for any 

XLB , where   ~bB  and ~B  denote the strongly semi-

closures of   bB  and B  in  ,X  and     LX ,  

respectively. 

Theorem 4.4. Let  ,X  be a topological space and 

  LX ,  be generated topologically by  ,X . Then 

  LX ,  is SS-closed iff   ,X  is SS-closed. 

Proof. Necessity. Let   be a strongly semi-open cover of 

 ,X . Then   AA |  is a family of strongly 

semi-open L -sets in   LX ,  with  

   .1  xAAXx   

From SS-closedness of    LX , , we have that 

    
 

 
 

  .1)( ~

22
~ 






 






 



xx A
AXxAAXx


 

 

This implies that there exists 
  2  such that 

       .1~   x
A

AXx   

Hence,  AA |~  is a cover of   ,X . Therefore   ,X  

is SS-closed. 

Sufficiency. Let  be a family of strongly semi-open L -

sets in   LX ,  and     .axBBXx     

If  0a , obviously we have that 

     
 

  .~

2







 











xBxB

BXxBXx    

Now we suppose that 0a . In this case, for any 

   0\ab  , we have that 

      xBxBxBb
BXxBXxBXx


 


























   

From the Lemma 4.2, this implies that   BB b |  is a 

strongly semi-open cover of   ,X . From SS-closedness 
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of  ,X , we know that there exists 
  2  such that  

   BB b |
~

 is a cover of   ,X . Obviously 

   BB b |~ is a cover of  ,X since 

        .~~~
bbb BBB  Hence   xBb BXx

~
   

Further, we have that 

 
 

  .~

2

~






 






 


xBxBb

BXxBXx  
 

This implies that 

    

    
 

  .| ~

2







 











xBabbaxB

BXxBXx  
  

Therefore,    LX ,  is SS-closed. 
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