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 Abstract — Since the limitation of real number 

representation of digital number, rounding error has existed 

almost everywhere in numerical computation.  Some 

mathematical algorithm that should be finite steps will 

become infinity iterations due to the existence of rounding 

error. Using this property, we designed a very simple 

algorithm for random number generator by subspace 

projection. 

I.  INTRODUCTION 
 

Cryptography is fundamental theory in network 
security; furthermore, random numbers play an essential 
role in cryptography.  The Random numbers are also very 
useful in simulation, chaos theory, game theory, 
information theory, pattern recognition, probability theory, 
quantum mechanics, statistics, and statistical mechanics.  
The random numbers could be generated from two major 
ways – true random number generators (TRNGs) and 
pseudo-random number generators (PRNGs).  TRNGs 
often generate random numbers from nature phenomena 
such as dice, coin flipping, flip-flop circuit, oscillator, 
electromagnetic wave, thermal noise, atmospheric noise, 
etc.  On the other hand, PRNGs often generate random 
numbers from mathematical functions such as linear 
congruential to simulate real randomness. 
 

A. PRNGs and TRNGs 

A linear congruential random number generator [2] 

represents one of the best-known PRNGs and was firstly 

broken by Jim Reeds [3] and then by Joan Boyar [4].  

Researchers develop the feedback shift register since then 

[5].    Tzeng et al. proposed the random numbers 

generated from divergence of scaling function [6] in 2009.  

The algorithm of [6] generates a random-like real number 

sequence first and then extracts a specific bit of every 

random-like real number as the binary random bits.  

Furthermore, the random-like real number sequence is 

produced by the divergence of scaling function in wavelet 

theorem; and the sequence is determined by its scaling 

coefficients.  In 2010, He Debiao, Chen Jianhua, and Hu 

Jin, proposed “A Random Number Generator Based on 

Isogenies Operations.”[7] They used character of elliptic 

curves to generate random numbers.  In 2012, Xing-yuan 

Wang and Xue Qin proposed "A new pseudo-random 

number generator based on CML and chaotic iteration,"[8] 

which combined the couple map lattice (CML) and 

chaotic iteration. 

 However, all random numbers have to pass the 

statistical test such as NIST SP-800-22 Rev.1a 15 

statistical tests [1] to verify the randomness.  We briefly 

describe statistical test as next section. 

 

B. Statistical Test Suite for Random Number Generators 

Alfred J. Menezes, Paul C. van Oorschot, and Scott 

A. Vanstone proposed five statistical tests - Frequency 

(Monobit) Test, Serial test (two-bit test), Poker test, Runs 

test, and Autocorrelation test - of random sequences - in 

Handbook of Applied Cryptography, 1996 [9]; but this 

verification method is not enough to approve the 

randomness.  Therefore, NIST published Special 

Publication SP-800-22 (A Statistical Test Suite for 

Random and Pseudorandom Number Generators for 

Cryptographic Applications) in 2001, and revised in 

August 2008 and April 2010 [1].  The SP-800-22 Rev.1a 

developed 15 statistical tests to verify the randomness of 

random numbers produced by either PRNGs or TRNGs.  

A qualified random number generator should pass all 15 

tests listed in the following: 

 

1. The Frequency (Monobit) Test 

2. Frequency Test within a Block 

3. The Runs test 

4. Test for the longest-Run-of-Ones in a Block 

5. The Binary Matrix Rank Test 

6. The Discrete Fourier Transform (spectral) 

Test 

7. The Non-overlapping Template Matching 

Test 

8. The Overlapping Template Matching Test 

9. Maurer’s “Universal Statistical” Test 

10. Linear Complexity Test 

11. The Serial test (two-bit test) 

12. The Approximate Entropy test 

13. The Cumulative Suns (Cusum) test 

14. The Random Excursions test 

15. The Random Excursions Variant test 

 

In addition, the NIST issues the 140 Publication 

Series to coordinate the requirements and standards for 

cryptographic modules.  The FIPS Pub 140-1 and 140-2 

were published in 1994 and 2004 respectively [10].  

Revised draft FIPS Pub 140-3 adding on new security 

features that reflect recent advances in technology and 

security methods was published in 2009 [11].  FIPS Pub 

140 serials recommend some statistical tests and FIPS pub 

800-90a recommend random number generator using 

Deterministic Random Bit Generator and providing 

validation system [12].  For more other statistical tests 

please refer to [10-13]. 
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C. Rounding Errors in numerical computing 

In numerical computation, the floating point is an 

approximated representation of real numbers. The 

numbers are usually represented as a fixed number of 

significant digits and scaled using an exponent by a certain 

base.  The base of digital numbers is normally 2. 

 

The IEEE 754 is a standard for binary floating-point 

numbers. The Double precision is the most used format in 

numerical computation, which is a binary format that 

occupies 

64 bits and its significance has a precision of 53 bits. The 

non-representational error is in the scale of 10-16.  Since 

the digital number using finite digits to represent real 

numbers, the unexpected consequences are derived from 

the following types: 

 

 The associative law might be not followed for 

floating-point addition and multiplication. 

 The distributive law might be not followed. 

 Subtracting a number from another nearly 

equal number may result in loss of 

significance. 

 a(1/a) might not equal to 1 for some 

floating-point number a. 

Hence, the more computations above occur, the 

more rounding errors appear.  In numerical computing, 

we try to avoid these rounding errors.  Contrarily, we will 

try to involve these rounding errors to make the 

computation results un-expected. 

For example, the following two equations are 

equivalent. 
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 Given the same x1 and x2, the results of y1 and 

y2 should be the same.  If we set x1 = 0.02873 and x2 = 

0.028699997 in Matlab, then y1 = 1.7230721999909∗10
−6

 

and  

y2 = 1.723072199990839∗10
−6

. The unnecessary 

computation makes a mere rounding error.  In the next 

section, we will propose a linear projection method to 

produce a sequence of random numbers. 

 

II.  SUBSPACE PROJECTION 

RANDOM NUMBER GENERATOR 

 

Some mathematical algorithms should have only 

finite steps theoretically, for example, the Gram-Schmidt 

process, conjugate gradient method, and etc.  However 

these mathematical algorithm will go more steps even 

infinity steps due to the existence of rounding errors. 

When the unexpected steps occur, people usually stop the 

algorithm and ignore the outputs. If the number of the 

unexpected steps becomes infinity and the outputs look 

like randomly, it is probably using this properties to design 

the random number generator. 

 

Gram-Schmidt process is one of such algorithms.  

Given an m-by-n matrix A, where n > m, Gram-Schmidt 

process looks for most m orthogonal columns that derived 

from the columns of A.  Because there are at most m 

independent vectors in R
m
 space, Gram-Schmidt process 

obtains all zero vectors after processing m + 1 columns.  

The m + 1 steps should completely be projected in the 

column space that spanned by the previous m columns, if 

those columns are independent.  But we will see that 

there is still none zero vectors obtained after m + 1 steps in 

practical.  Those unexpected vectors are produced by the 

effect of rounding error. Using this practical property, we 

can design a new random number generator. In next 

subsection, we will propose a linear projection method 

that includes many rounding error effects to design a 

simple random number generator. 

 

A. Main Methodology 

 

Let A ∈ Mn(Z) be an integer square matrix and Q, R 

are derived from the QR decomposition of A. That is A = 

QR, where Q is a unitary matrix in Mn(R
1
) and R is a 

triangular matrix.  If A is full rank, then the columns of Q 

are an orthogonal basis of R
n
.  In general, if each element 

of A is randomly chosen from Z, A will be full rank and Q 

is an orthogonal basis of R
n
. 

If Q = [q1 , q2 ,…, qn], where qi is the i-th column of 

Q, we set x0 = q1 and Q = [q2 ,…, qn]. 

 

Since q1 is perpendicular to qi for i = 2, . . . ,n, we 

have: 

QQ
T
 x0 = 0.               

(1) 

We can rewrite the equation (1) by: 
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  x0 –(qi
T
 x0) qi means x0 removes the factor in qi 

direction.  If we normalize x0 to be a unit vector in each 

time that we remove the factor in qi direction for i = 

1, . . . ,n, the result should be the same, say x0, 

theoretically.  However, this might not be true in 

numerical computing, that is x1 ≠ x0 in the numerical 

sense. 

  If we reset Q = [q2 , q3 ,…, qn, xk] for every time we 

obtain the new xk and repeat the following equation: 


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we can get a vector sequence { xk }. 

Please note that Q is always a unitary matrix, 

because its columns are orthogonal to one other.  xk is 

almost parallel to q1 with some modification by rounding 

error.  The cyclic permutation of columns of Q makes the 

output more random.  After the random vector sequence 

{ xk } be obtained, we can easily fabricate the randomly 

real number or randomly binary number from the element 

of xk.  The algorithm 1 is the basis algorithm of our 

method. 

In the step 8 of algorithm 1, the normalization 
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makes more rounding error.  In the step 15 of algorithm 1, 

f(x) is a function that transfers the i-th element xk to the 

certain format the we want.  For example, if f(x) = x, we 

assign the i-th element as the output of random number 

and the final output R becomes a randomly real number 

sequence. If f(x) transfers x to a binary representation and 

then extract one of the bit from the significance part of 

binary representation, then the output R will become a 

randomly binary sequence. 

We restrict matrix A in Mn(Z) space, because we 

hope A can be determined by the user input password in 

practice. Then Q is determined by A, the initial x0 is 

determined by Q and the result R is also determined. 

Actually the initial x0 can be not determined by Q, we can 

release this criterion for further applications. Another 

important fact is that this rounding error type of projection 

is not linear, because we have insert the normalization in 

each steps. 

 

Algorithm 1 Rounding error random number generator 

Require: An integer n ≧ 2 and N > 0 

A ∈ Mn(Z) 

QR = A 

k = 0 

R = [] 

Ensure: A is full rank. 

1: while k < N do 

2:  xk = Q(:, 1) 

3:  x̂ = xk 

4: Q = Q(:; 2 : n) 

5: 

6:  for i=1:n-1 do 

7:   xk = xk - Q(:; 2)*( Q(:; 2)
’
* xk) 

8:   xk = xk/|| xk || 

9:  end for 

10:  xk = x̂ - xk 

11:  xk = xk/|| xk || 

12:  Q = [Q| xk] 

13: 

14:  for i=1:p do 

15:   r = f(xk(i)) 

16:  R = [R|r] 

17:   k = k+1 

18: 

19:   if k = N then 

20:    break 

21:   end if 

22:  end for 

23: end while 

24: return R 

 

III.  EXPERIMENTAL RESULT 

We have try the square matrix with size for 3, 5, 8, 

10, 16, 32, 64 and 128.  For the fixed matrix size, we 

randomly chosen matrix A from Mn(Z), where the element 

of A belongs to [−100, 100].  The function f(x) = b(x, t) 

transfers real number x to the significance part of IEEE 

754 representation and then extract the t-th bit.  Then the 

result R is a randomly   binary sequence.  The computer 

specification of experience is AMD Phenom II X2 

555(3.2G Hz, 2 Cores), 4G RAM; and the MATLAB 

2013a. We are generating 1,000,000 random bits spend 

around 3 minutes. 

 

For the fixed matrix size, we repeat 100 times to 

obtain R with length 1000000. Then we use NIST 

SP800-22 Rev.1a to check the randomness of our random 

number. The results of the previous experiments are 

shown in Figure 1 to Figure 8. The y-axis is the pass rate 

of each test. The x-axis is the bit location in the 

significance part of IEEE 754.  The red bar is the average 

of the pass rate of 100 experiments and the blue bar is the 

minimal pass rate. 

We can see that the previous bits of the significance 

part is not useful. This is natural that we normalize the 

vector for each steps in our algorithm and the previous 

parts of the significance part is related to the average size 

of elements in the one norm vector. If the vector belongs 

to R
n
, the average of each element is n/1 . 

We also see that the small size matrices are not 

useful. We recommend that the matrix size is greater than 

8-by-8 and the bit locations are among 10 to 40. 

 

Fig. 1.   Test Results of 3-by-3 matrix 

 

Fig. 2.   Test Results of 5-by-5 matrix 

 
Fig. 3.   Test Results of 8-by-8 matrix 
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Fig. 4.   Test Results of 10-by-10 matrix 

 

Fig. 5.   Test Results of 16-by-16 matrix 

 

Fig. 6.   Test Results of 32-by-32 matrix 

 

Fig. 7.   Test Results of 64-by-64 matrix 

 

Fig. 8.   Test Results of 128-by-128 matrix 

IV.  CONCLUSION 

We propose a rounding error type of random 

number generator designed by the linear projection.  The 

main idea is using the experiment when serious rounding 

error can be produced in numerical computing.  The 

special design of projection makes this method is fast and 

simple.  Since the special projection is not a linear 

operation, this make the random output can pass the NIST 

SP800-22 Rev.1a. 
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