
Rounding error type random number generator designed by subspace

projection

Jer-Ming Tsai
Dept. of Information &

Communication

Kun Shan University

Email: tjm@fhl.net

I-Te Chen
Dept. of Healthcare Administration & Medical

Informatics Kaohsiung Medical University

Email: itchen@kmu.edu.tw

Jengnan Tzeng*

Dept. of Mathematical Science

National Cheng-Chi University

Email:jengnan@math.nccu.edu.tw

 Abstract — Since the limitation of real number

representation of digital number, rounding error has existed

almost everywhere in numerical computation. Some

mathematical algorithm that should be finite steps will

become infinity iterations due to the existence of rounding

error. Using this property, we designed a very simple

algorithm for random number generator by subspace

projection.

I. INTRODUCTION

Cryptography is fundamental theory in network
security; furthermore, random numbers play an essential
role in cryptography. The Random numbers are also very
useful in simulation, chaos theory, game theory,
information theory, pattern recognition, probability theory,
quantum mechanics, statistics, and statistical mechanics.
The random numbers could be generated from two major
ways – true random number generators (TRNGs) and
pseudo-random number generators (PRNGs). TRNGs
often generate random numbers from nature phenomena
such as dice, coin flipping, flip-flop circuit, oscillator,
electromagnetic wave, thermal noise, atmospheric noise,
etc. On the other hand, PRNGs often generate random
numbers from mathematical functions such as linear
congruential to simulate real randomness.

A. PRNGs and TRNGs

A linear congruential random number generator [2]

represents one of the best-known PRNGs and was firstly

broken by Jim Reeds [3] and then by Joan Boyar [4].

Researchers develop the feedback shift register since then

[5]. Tzeng et al. proposed the random numbers

generated from divergence of scaling function [6] in 2009.

The algorithm of [6] generates a random-like real number

sequence first and then extracts a specific bit of every

random-like real number as the binary random bits.

Furthermore, the random-like real number sequence is

produced by the divergence of scaling function in wavelet

theorem; and the sequence is determined by its scaling

coefficients. In 2010, He Debiao, Chen Jianhua, and Hu

Jin, proposed “A Random Number Generator Based on

Isogenies Operations.”[7] They used character of elliptic

curves to generate random numbers. In 2012, Xing-yuan

Wang and Xue Qin proposed "A new pseudo-random

number generator based on CML and chaotic iteration,"[8]

which combined the couple map lattice (CML) and

chaotic iteration.

 However, all random numbers have to pass the

statistical test such as NIST SP-800-22 Rev.1a 15

statistical tests [1] to verify the randomness. We briefly

describe statistical test as next section.

B. Statistical Test Suite for Random Number Generators

Alfred J. Menezes, Paul C. van Oorschot, and Scott

A. Vanstone proposed five statistical tests - Frequency

(Monobit) Test, Serial test (two-bit test), Poker test, Runs

test, and Autocorrelation test - of random sequences - in

Handbook of Applied Cryptography, 1996 [9]; but this

verification method is not enough to approve the

randomness. Therefore, NIST published Special

Publication SP-800-22 (A Statistical Test Suite for

Random and Pseudorandom Number Generators for

Cryptographic Applications) in 2001, and revised in

August 2008 and April 2010 [1]. The SP-800-22 Rev.1a

developed 15 statistical tests to verify the randomness of

random numbers produced by either PRNGs or TRNGs.

A qualified random number generator should pass all 15

tests listed in the following:

1. The Frequency (Monobit) Test

2. Frequency Test within a Block

3. The Runs test

4. Test for the longest-Run-of-Ones in a Block

5. The Binary Matrix Rank Test

6. The Discrete Fourier Transform (spectral)

Test

7. The Non-overlapping Template Matching

Test

8. The Overlapping Template Matching Test

9. Maurer’s “Universal Statistical” Test

10. Linear Complexity Test

11. The Serial test (two-bit test)

12. The Approximate Entropy test

13. The Cumulative Suns (Cusum) test

14. The Random Excursions test

15. The Random Excursions Variant test

In addition, the NIST issues the 140 Publication

Series to coordinate the requirements and standards for

cryptographic modules. The FIPS Pub 140-1 and 140-2

were published in 1994 and 2004 respectively [10].

Revised draft FIPS Pub 140-3 adding on new security

features that reflect recent advances in technology and

security methods was published in 2009 [11]. FIPS Pub

140 serials recommend some statistical tests and FIPS pub

800-90a recommend random number generator using

Deterministic Random Bit Generator and providing

validation system [12]. For more other statistical tests

please refer to [10-13].

International Workshop on Cloud Computing and Information Security (CCIS 2013)

© 2013. The authors - Published by Atlantis Press 123

mailto:tjm@fhl.net
mailto:tjm@fhl.net
mailto:itchen@kmu.edu.tw
mailto:jengnan@math.nccu.edu.tw

C. Rounding Errors in numerical computing

In numerical computation, the floating point is an

approximated representation of real numbers. The

numbers are usually represented as a fixed number of

significant digits and scaled using an exponent by a certain

base. The base of digital numbers is normally 2.

The IEEE 754 is a standard for binary floating-point

numbers. The Double precision is the most used format in

numerical computation, which is a binary format that

occupies

64 bits and its significance has a precision of 53 bits. The

non-representational error is in the scale of 10-16. Since

the digital number using finite digits to represent real

numbers, the unexpected consequences are derived from

the following types:

 The associative law might be not followed for

floating-point addition and multiplication.

 The distributive law might be not followed.

 Subtracting a number from another nearly

equal number may result in loss of

significance.

 a(1/a) might not equal to 1 for some

floating-point number a.

Hence, the more computations above occur, the

more rounding errors appear. In numerical computing,

we try to avoid these rounding errors. Contrarily, we will

try to involve these rounding errors to make the

computation results un-expected.

For example, the following two equations are

equivalent.

,2

2

2

11 xxy 

and

))log(2
)(

)(
exp(log 21

21

21
2 xx

xx

xx
y 






 Given the same x1 and x2, the results of y1 and

y2 should be the same. If we set x1 = 0.02873 and x2 =

0.028699997 in Matlab, then y1 = 1.7230721999909∗10
−6

and

y2 = 1.723072199990839∗10
−6

. The unnecessary

computation makes a mere rounding error. In the next

section, we will propose a linear projection method to

produce a sequence of random numbers.

II. SUBSPACE PROJECTION

RANDOM NUMBER GENERATOR

Some mathematical algorithms should have only

finite steps theoretically, for example, the Gram-Schmidt

process, conjugate gradient method, and etc. However

these mathematical algorithm will go more steps even

infinity steps due to the existence of rounding errors.

When the unexpected steps occur, people usually stop the

algorithm and ignore the outputs. If the number of the

unexpected steps becomes infinity and the outputs look

like randomly, it is probably using this properties to design

the random number generator.

Gram-Schmidt process is one of such algorithms.

Given an m-by-n matrix A, where n > m, Gram-Schmidt

process looks for most m orthogonal columns that derived

from the columns of A. Because there are at most m

independent vectors in R
m
 space, Gram-Schmidt process

obtains all zero vectors after processing m + 1 columns.

The m + 1 steps should completely be projected in the

column space that spanned by the previous m columns, if

those columns are independent. But we will see that

there is still none zero vectors obtained after m + 1 steps in

practical. Those unexpected vectors are produced by the

effect of rounding error. Using this practical property, we

can design a new random number generator. In next

subsection, we will propose a linear projection method

that includes many rounding error effects to design a

simple random number generator.

A. Main Methodology

Let A ∈ Mn(Z) be an integer square matrix and Q, R

are derived from the QR decomposition of A. That is A =

QR, where Q is a unitary matrix in Mn(R
1
) and R is a

triangular matrix. If A is full rank, then the columns of Q

are an orthogonal basis of R
n
. In general, if each element

of A is randomly chosen from Z, A will be full rank and Q

is an orthogonal basis of R
n
.

If Q = [q1 , q2 ,…, qn], where qi is the i-th column of

Q, we set x0 = q1 and Q = [q2 ,…, qn].

Since q1 is perpendicular to qi for i = 2, . . . ,n, we

have:

QQ
T
 x0 = 0.

(1)

We can rewrite the equation (1) by:





n

i

i

T

i qxqxx
2

001 .)((2)

 x0 –(qi
T
 x0) qi means x0 removes the factor in qi

direction. If we normalize x0 to be a unit vector in each

time that we remove the factor in qi direction for i =

1, . . . ,n, the result should be the same, say x0,

theoretically. However, this might not be true in

numerical computing, that is x1 ≠ x0 in the numerical

sense.

 If we reset Q = [q2 , q3 ,…, qn, xk] for every time we

obtain the new xk and repeat the following equation:




 
n

i

ik

T

ikk qxqxx
2

11 ,)(

we can get a vector sequence { xk }.

Please note that Q is always a unitary matrix,

because its columns are orthogonal to one other. xk is

almost parallel to q1 with some modification by rounding

error. The cyclic permutation of columns of Q makes the

output more random. After the random vector sequence

{ xk } be obtained, we can easily fabricate the randomly

real number or randomly binary number from the element

of xk. The algorithm 1 is the basis algorithm of our

method.

In the step 8 of algorithm 1, the normalization

124

makes more rounding error. In the step 15 of algorithm 1,

f(x) is a function that transfers the i-th element xk to the

certain format the we want. For example, if f(x) = x, we

assign the i-th element as the output of random number

and the final output R becomes a randomly real number

sequence. If f(x) transfers x to a binary representation and

then extract one of the bit from the significance part of

binary representation, then the output R will become a

randomly binary sequence.

We restrict matrix A in Mn(Z) space, because we

hope A can be determined by the user input password in

practice. Then Q is determined by A, the initial x0 is

determined by Q and the result R is also determined.

Actually the initial x0 can be not determined by Q, we can

release this criterion for further applications. Another

important fact is that this rounding error type of projection

is not linear, because we have insert the normalization in

each steps.

Algorithm 1 Rounding error random number generator

Require: An integer n ≧ 2 and N > 0

A ∈ Mn(Z)

QR = A

k = 0

R = []

Ensure: A is full rank.

1: while k < N do

2: xk = Q(:, 1)

3: x̂ = xk

4: Q = Q(:; 2 : n)

5:

6: for i=1:n-1 do

7: xk = xk - Q(:; 2)*(Q(:; 2)
’
* xk)

8: xk = xk/|| xk ||

9: end for

10: xk = x̂ - xk

11: xk = xk/|| xk ||

12: Q = [Q| xk]

13:

14: for i=1:p do

15: r = f(xk(i))

16: R = [R|r]

17: k = k+1

18:

19: if k = N then

20: break

21: end if

22: end for

23: end while

24: return R

III. EXPERIMENTAL RESULT

We have try the square matrix with size for 3, 5, 8,

10, 16, 32, 64 and 128. For the fixed matrix size, we

randomly chosen matrix A from Mn(Z), where the element

of A belongs to [−100, 100]. The function f(x) = b(x, t)

transfers real number x to the significance part of IEEE

754 representation and then extract the t-th bit. Then the

result R is a randomly binary sequence. The computer

specification of experience is AMD Phenom II X2

555(3.2G Hz, 2 Cores), 4G RAM; and the MATLAB

2013a. We are generating 1,000,000 random bits spend

around 3 minutes.

For the fixed matrix size, we repeat 100 times to

obtain R with length 1000000. Then we use NIST

SP800-22 Rev.1a to check the randomness of our random

number. The results of the previous experiments are

shown in Figure 1 to Figure 8. The y-axis is the pass rate

of each test. The x-axis is the bit location in the

significance part of IEEE 754. The red bar is the average

of the pass rate of 100 experiments and the blue bar is the

minimal pass rate.

We can see that the previous bits of the significance

part is not useful. This is natural that we normalize the

vector for each steps in our algorithm and the previous

parts of the significance part is related to the average size

of elements in the one norm vector. If the vector belongs

to R
n
, the average of each element is n/1 .

We also see that the small size matrices are not

useful. We recommend that the matrix size is greater than

8-by-8 and the bit locations are among 10 to 40.

Fig. 1. Test Results of 3-by-3 matrix

Fig. 2. Test Results of 5-by-5 matrix

Fig. 3. Test Results of 8-by-8 matrix

125

Fig. 4. Test Results of 10-by-10 matrix

Fig. 5. Test Results of 16-by-16 matrix

Fig. 6. Test Results of 32-by-32 matrix

Fig. 7. Test Results of 64-by-64 matrix

Fig. 8. Test Results of 128-by-128 matrix

IV. CONCLUSION

We propose a rounding error type of random

number generator designed by the linear projection. The

main idea is using the experiment when serious rounding

error can be produced in numerical computing. The

special design of projection makes this method is fast and

simple. Since the special projection is not a linear

operation, this make the random output can pass the NIST

SP800-22 Rev.1a.

ACKNOWLEDGMENT

This work was supported in part by the National

Science Council under the Grants NSC

102-2218-E-168-001-.

REFERENCES

[1] NIST, FIPS Special Publication 800-22 Rev.1a “A Statistical Test

Suite for the Validation of Random Number Generators and
Pseudo Random Number Generators for Cryptographic

Applications”, April 2010.

[2] J.B Plumstead, “Inferring a Sequence Generated by a Linear
Congruence,” Proceedings of the 23th IEEE symposium on the

Foundations of Computer Science, pp.153-159, ISSN:

0272-5428, 1982.

[3] J.A. Reeds, “Cracking Random Number Generator,” Cryptologia,

Vol.1, No.1, pp.20-26, 1997.

[4] J. Boyar, “Inferring sequences produced by pseudo-random
number generators,” Journal of the ACM Vol. 36, Issue 1,

pp.129-141, 1989.

[5] P. Alfke, “Efficient Shift Registers, LFSR, Counters, and Long
Pseudo-Random Sequence Generators,” XAPP 052, (Version

1.1), 1996.

http://www.xilinx.com/support/documentation/application_notes
/xapp052.pdf

[6] Jengnan Tzeng, I-Te Chen*, and, Jer-Min Tsai “Random Number
Generator designed by the divergence of scaling functions,”

International Conference on Intelligent Information Hiding and

Multimedia Signal Processing (IIHMSP 2009), pp.1038-1041,
September 12-14, 2009.

[7] He Debiao, Chen Jianhua, and Hu Jin, “A Random Number

Generator Based on Isogenies Operations.”

http://eprint.iacr.org/2010/094, 2010.

[8] Xing-yuan Wang and Xue Qin, "A new pseudo-random number

generator based on CML and chaotic iteration," Nonlinear
Dynamics, Vol.70, No.2, pp-1589-1592, 2012.

[9] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone,

Handbook of Applied Cryptography, CRC Press, pp. 169-190,
October 16, 1996. ISBN: 0849385237.

[10] NIST, FIPS PUB 140-2, “Derived Test Requirements for FIPS

PUB 140-2, Security Requirements for Cryptographic Modules”,
Federal Information Processing Standards Publication, March

2004.

[11] NIST, Revised draft FIPS 140-3, December 11, 2009.

[12] NIST, Revised draft FIPS 800-90a, Jan. 2012.

[13] George Marsaglia, “DIEHARD: a battery of tests of

randomness,” the preceding description of the DIEHARD
executable program that explains the significance of the results,

1995.

126

http://www.xilinx.com/support/documentation/application_notes/xapp052.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp052.pdf
http://eprint.iacr.org/2010/094

