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Abstract—with the proposed of quantum computers, the 

knapsack public-key cryptosystem (PKC) becomes very 

popular. At present the most significant challenge towards 

knapsack PKC is lattice attack, and density is one of the most 

important factors to measure the security of it. In this paper, 

we introduce a probabilistic way to encrypt and compared the 

knapsack quadratic knapsack and the probabilistic knapsack.. 

We know that the probabilistic scheme enjoys a high density, 

information rate and it also secure against brute force attack, 

statistical analysis attack, lattice attack and so on, and it is 

efficient and practical. 

Keywords-Probabilistic encryption; Statistical analysis attack; 

Lattice basis reduction 

I.  INTRODUCTION 

Since Diffie-Hellman proposed public-key cryptosystem 
(PKC) in "New directions in cryptography"[2], public-key 
cryptosystem becomes very popular. Lots of classical 
algorithms like RSA and ECC appeared. With the proposing 
of quantum computer and the enhancement of the computer 
calculation ability, the computer can solve many mathematic 
problems[13]. So the designers are actively to find a new 
cryptosystem to cope with the challenge of the quantum 
computer. In 1998, Stony Brook University algorithm 
database showed that knapsack is the one of the hottest 
research in the 75 kinds of algorithms[10], and quantum 
computer can’t solve this kind of combinatorial optimization 
problems[14]. 

The first knapsack PKC which is proposed by Markle-
Hellman is a super increasing knapsack encryption 
scheme[3]. Lagarias and Odlyzko proposed the low-density 
attack (LDA) for solving general low-density subset sum 
problems[6]. Coster et al had strictly proved that a knapsack 
which density is less than 0.9408 will suffer from this 
attack[8]. So density plays an important role in the security 
of the knapsack PKC.  

In order to make the density high, the CR scheme[4] and 
the OTU scheme[5] use a low weight encoding . However, 
Nguyen and Stern showed that the low weight encoding is 
not secure[7]. So many designers prefer to use quadratic 
knapsack to achieve a very high density. The first quadratic 
knapsack was proposed by Gallo et al[9]. They can easily 
solve the density problem. And the quadratic knapsack is a 
nonlinear PKC. So it is much safer than the linear system. 
But it also has some problems in encryption. It has to keep 

the quadratic residue table as secret key which will increase 
the difficulty of key management. 

So in the section 2, we give some background knowledge. 
In section 3, we give a new knapsack encryption way. In 
section 4 we compare the knapsack, quadratic knapsack and 
the new knapsack and know that the new knapsack scheme is 
efficient and practical 

II. BACKGROUND KNOWLEDGE 

A. Knapsack problem 

The knapsack problem is to find the solution 

1( , , ) ,  {0, , 1}nx x I I p    that satisfied the linear 

Diophantine equation 

1 1 2 2 n nD a x a x a x    

for giving positive integers 1 2, , , na a a and C. To 

solve this Diophantine equation is to seek integer solution of 

1 2( , , , )nx x x over an integer ring. And the result is not 

unique. 
Another problem is quadratic knapsack problem or 

matrix cover problem which has to solve the Diophantine 
equation 


2 2 2

1 1 2 2 n nD a x a x a x    

where ix I  and , 1, ,ia i n  are positive integers.  

These problems are used to construct knapsack PKC[16-
18]. In this paper we compared these two knapsacks, and 
find some relationship about it.  

B. Definition of Lattice 

A lattice is a discrete subgroup of 
nR . In another words, 

every lattice L is generated by some set of linearly 

independent vectors iv L , called a basis of L, i.e. 

 1 1 1| , ,n n nL z v z v z z Z      

The most famous problem in lattices theory includes the 
shortest vector problem(SVP), the closest vector problem 
(CVP) and the smallest basis problem(SBP). SVP is to find 
the shortest vector in L. CVP is to minimize the length of the 
length of the vector s-v in L, where s and L are given. The 
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best polynomial-time algorithms for solving SVP are the 
LLL algorithm[12]. The shortest lattice is the solution vector 
of the low density subset-sum problem on a great probability. 
And no more polynomial time algorithm can solve these 
three problems. So these problems have significance in 
complexity theory and cryptography.  

C. Definition of Density 

 There are different definitions when the knapsacks are 
based on different problems, such as the density of 0-1 
knapsack[6], the density of non-0-1 knapsack[11] and the 
pseudo-density of quadratic knapsacks[7][15]. 

   In this paper, we use the definition in[11]: 

2 maxlog ( )

nm
d

C
  

Where, Cmax stands for the maximum of the ciphertext, m 
stands for the binary length of mi.  

Coster et al strictly proved that a knapsack which density 
is less than 0.9408 can be broken by lattice algorithms[12] 
Here we take 0.9408 as the standard of the security of the 
system. 

III. A NEW KNAPSACK ENCRYPTION WAY 

A. A new way to encrypt 

 Knapsack and the quadratic knapsack public-key model 
is traditional model which is described in Fig 1. 

 

 

Figure 1.  traditional encryption model 

This model is a traditional one that one plaintext 
corresponds to one ciphertext. The attackers can easily get 
the relationship between the plaintext and the ciphertext. So 
it is not secure against the statistical analysis attack.  

Inspired from the one time pad which has a good 
performance in security, we add some random number to the 
system. So the ciphertext are different even then plaintext is 
the same. We can easily break the relationship between the 
plaintext and the ciphertext. The new model is as follows.  

 

 
Figure 2.  the new encryption model 

From Fig 2, we know that the ciphertext not only have 
relation with the plaintext but also have relationship with 
random number. It is more complex than the traditional one. 
And the system will enjoy a very high density by adding 

some random number to the system. The detail security 
analysis shown in section 4 

B. encryption form 

 The new encryption form: 

  

1 1

 mod
h n

i i i i

i i h

C a m a m N 
  

             (3) 

Naa n ,,,1  are public-keys.  is a random number with 

binary length e. i.e. e
2

 and does not need to be 

transferred. C is the ciphertext which need to be transferred.  

IV. COMPARISON 

In fact, the properties of the system have relationship 
with not only encrypt form but also key generation. In order 
to describe the advantage of the new encryption form better, 
we introduce a specific algorithm.  

A. Knapsack algorithm 

1) Key generation 
As space is limited, here we simply describe the key 

generation. All the symbols are the same with [1], if the 
reader wants to know the details, please refers to [1]. 
1. Construct two simple knapsack vectors 

1 1( ,..., ), ( ,..., )n nA a a B b b   

2. Randomly choose a 2-dimensional matrix C 

3. Compute
1

1

ˆ ˆ ˆ

ˆ ˆˆ

n

n

a a AA
C

Bb bB

     
            




  

4. Randomly choose two prime integers p and q, and 

compute N pq  

5. Use Chinese remainder theorem to generate a cargo 

vector 1
ˆˆ( , , ),  (mod ),  (mod )n i i i iE e e e a p e b q     

6. Randomly choose an invertible integer v over ZN.  

7. Compute ),,( 1 nffF  , Nvef ii mod . 

Public key: F. 

Secret key: 
1 1, , , ,N p q C v 

 

2) Decryption 
In this part, we just introduce how to decrypt when 

encrypt as (3). If the readers want to know how the 
quadratic knapsack works, refers to

 [1]
. If the readers want to 

know how the knapsack decrypts, he can let 1 . 

1. Compute
-1

1
(modN)

n

i ii
t cv e m


    

2. Compute mod , modp qt t p t t q    

T -1 T

A B p q(s ,s ) (t ,t )C  

3. Compute n n-i 1 n n-i 1gcd(a ,...,a ), gcd(b ,...,b )i ic d     

 1,...ni|)/dd,/c(c)g,(g i1-ii1-i2i1i  igG  

4. Compute 
1 ( )modA B nx s ,s g  

5. When i=1,…, h, compute 

Plaintext 

Encryption 

Black box 
Ciphertext 

Random number 

Plaintext 
Encryption 

Black box 
Ciphertext 
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1 1

1 21 1
- - , - -

i i

i A j j i B j jj j
r s a m r s b m 

 

 
    

Then 

1 1

1 2
1

1 1 1 1

mod

- -

i i i i
i n-i

n-i n-i n-i n-i

a r b r
m ,  g

c c d d


   

    
     
     

  

When i=h+1,...,n-1, compute  

1

1 1 1

1

2 1 1

( - - )/

( - - ) /

h i

i A j j j jj j h

h i

i B j j j jj j h

r s a m a m

r s b m b m

 

 



  



  

  



 


 

 
 

Then 
1

1

2

1

11

1

1

1

mod 




































 n-i

n-i

i

-

n-i

i

n-i

i

-

n-i

i
i  g

d

r

d

b
,

c

r

c

a
m  

When i=n, compute 
1

1 1
[( - - )/ ] /

h n

n A j j j j nj j h
m s a m a m a 



  
    

B. Comparison and analysis  

1) Density and information rate 
Though using the same key generation, these three kinds 

of encryption schemes also have differences in condition 
they have to satisfy. 

 The knapsack must satisfy 

1 11 1

ˆˆ ,
n n

i i i ii i
p a x q b x

 
   , 

 The quadratic knapsack must satisfy  

2 2

2 21 1

ˆˆ ,
n n

i i i ii i
p a y q b y

 
   . 

 The new knapsack scheme must satisfy  
1

3 1 1

3 1 1

ˆ ˆ  

ˆ ˆ

h i h

i i i ii i h

h n

i i i ii i h

p a m a m

q b b m b m

 

 

 

  

  

   


  

 

 
 

We compute the density and the information rate of these 
three systems separately. The relationship shows in Fig 3 and 
Fig 4. Here we choose n=50.    

 
Figure 3.  the relationship of density 

In Fig 3, the dotted line represents the standard of density. 
Above the dotted line, the density is greater than 0.9408. 
Below the dotted line, the density is less than 0.9408. d1 

represent the density of knapsack, d2 represent the density of 
quadratic knapsack. d3 represent the new knapsack scheme. 
From Fig 3 we know that the density of the new knapsack 
and the quadratic knapsack can be easily larger that 0.9408, 
but the knapsack PKC is hard to be up to 0.9408. So the 
quadratic knapsack and the new knapsack are secure against 
Shamir Secret key recovery attack and Low density subset-
sum attack. 

 

Figure 4.   the relation of information rate 

In Fig 4, r1 represent the information rate of knapsack. r2 
represent the information rate of quadratic knapsack. r3 
represent the information rate of the new knapsack scheme. 
From the Fig 4, we know that the new knapsack scheme is 
very large relatively, and the quadratic is much smaller than 
the new knapsack scheme. So the new scheme can have very 
high space utilization.  

2) Brute force attack 
 A brute way to break the system is to find 

1 2( , , )nM m m m  which satisfied (3). The attackers can 

exhaust
1 1

mod
h n

i i i ii i h
a m a m N 

  
   for im I . 

This attack needs at least 
/2nnp steps.  

Suggest that the p m in the knapsack PKC, then 

/ 2p m  in the quadratic knapsack PKC, and p m  in 

the new knapsack way. So we know that the probability of 

the broken the quadratic knapsack is 
/22n

larger than the new 
way. The new knapsack is much safer than the quadratic 
systems.  

3) Probability properties 
Only the new knapsack has the probability properties. 

The parameter  has greatly impact on the result of 

encryption. From (3) we know that the ciphertext is 
depended on not only the plaintext and the parameter . It is 

for this reason that the ciphertext are differed even the 
plaintext is same. So the distribution of the ciphertext is not 
the same with the plaintext. So it is secure against the 
Statistical analysis attack. 

4) Lattice attack 
 Lattice basis reduction is one of the most important 

content in the lattice theory and it is also one of the most 
important tool in design and analysis. In the theory research, 
many lattice problems can be solved with lattice basis 
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reduction. In cryptography, the attackers can get the plaintext 
when he just knows the ciphertext and the encryption 
function by using lattice basis reduction. 

From (3), we know that there is a k that satisfied the 

equation
1 1

h n

i i i ii i h
f m f m kN c 

  
     . The 

attackers can construct matrix V 

11

1

2

3

1 0 0 0

0 1 0 0

0 0 1 0 1

0 0 0 1

0 0 0 0

nn

n

n

n

vf

vf
V

v

vN

vc







  
  
  
  

    
  
  
       



     









 

The linear combination of these vectors is a lattice 

 1 1 3 3 1 3,n n nL z v z v z z Z       and 1 1m v    

1 1 1 2 3..h h h h n n n n nm v m v m v v kv v              

1 1( ,.., , ,.., , , ,0)h h nm m m m k L    . So the lattice L 

contains the entire message about the plaintext.  

In our algorithm, the shortest vector is 1nv  and 

1 2nv   . From section 2.2, we know that if we use 

SVP algorithm, the result will be 1nv  not the plaintext. If we 

use the CVP algorithm the result could be 1nzv L   not the 

plaintext. Thus our algorithm is secure against the Lattice 
attack. 

V. CONCLUSION 

In this paper, we proposed probabilistic encryption way 
that can adapt into many kinds of knapsack cryptosystems. 
All the key generation method can be used directly. We just 
need to change the encryption form, corresponding change 
the decryption method. Section 4 is just an example of how 
to change the decryption method.  

The little change of the encryption way will cause a great 
change in the properties of the knapsack system. This 
encryption way has many good performances: it has a very 
large information rate; the brute force attack is 
computationally infeasible; it can protect from Shamir secret 
recovery attack, low-density subset-sum attack and Lattice 
attack; what’s more, the probabilistic encryption way is 
secure against statistical analysis attack.  
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