
Defending Against SYN Flood Attack under Asymmetric Routing Environment

Jianxi Tao
*†§

, Li Zhou
‡
, Zhou Zhou

*†
, Rong Yang

*†
, Wei Yang

*†
, Qingyun Liu

*†

* Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

† National Engineering Laboratory for Information Security Technology, Beijing, China

‡ National Computer Network Emergency Response Technical Team/Coordination Center, Beijing, China

 § College of Computer Science and Technology, Beijing University of Posts and Telecommunications, Beijing, China

Corresponding Author: yangrong@iie.ac.cn

Abstract—SYN Flood attack is still one of the major

distributed denial of service attacks. Any network device or

computer system with connection state table may have the

possibility of suffering from this attack. Moreover, under

asymmetric routing environment, unidirectional traffic

problem makes it more difficult to defend against SYN Flood

attack. In allusion to this problem, this paper presents DARE,

a novel SYN Flood defense architecture. It consists of a

statistical attack detection strategy and a dual connection

management strategy. We verify the feasibility and

effectiveness of our method through experiments in real

network environment. The results show that our proposed

method can filter SYN flood traffic, and mitigate the pressure

of network infrastructure.

Keywords-SYN Flood; asymmetric routing; connection

management;

I. INTRODUCTION

With the development of streaming media business and
the upgrade of user access bandwidth, the volume of Internet
traffic is growing rapidly. The growth rate stays high for
long time. Unfortunately, with the growth of Internet traffic,
the DDoS attacks occur more and more rampantly. SYN
Flood is one of the most salient problems. Any network
device or computer system with connection state table, such
as IDS (Intrusion Detection System), IPS (Intrusion
Prevention System) etc., have the possibility of suffering
from this attack. Nowadays, due to large-scale SYN Flood
attacks, the connection state tables of network infrastructure
are exhausted easily. They are not adequate to protect against
SYN Flood attack effectively any more [1, 2]. What's worse,
asymmetric routing becomes a universal phenomenon along
with the complex structure of Internet. Asymmetric routing
is a situation where for one reason or another packets
flowing in i.e. TCP connections flow through different routes
to different directions. Consequently, for network security
appliance deployed between communicating parties, it makes
original connection state management scheme invalid under
the asymmetric routing environment.

The above observations reveal that we must find out a
more effective SYN Flood defense solution. To this end, this
paper presents a SYN Flood defense architecture, namely
DARE, for intermediate network security appliance under

asymmetric routing environment. Combined a statistical
attack detection method with a dual connection management
strategy, DARE can ease the influence brought by SYN
Flood attack.

The remainder of this paper is organized as follows.
Section II analyzes the limitations of existing approaches
under asymmetric routing environment. Section III presents
the proposed defense architecture. The experimental results
reported in Section IV. Finally, Section V concludes the
paper.

II. RELATED WORK

Many solutions have been proposed for defending against
SYN Flood attack. They can be divided into two categories.
One is that the server ensures the authenticity and legality of
the SYN request via some assistant mechanisms, such as
SYN Cookie, SYN Cache, SYN Proxy and SYN Kill. The
other is that detecting the attack through control bits of TCP
segment, then filter the attack traffic based detection result.

Although existing schemes can mitigate the damage of
SYN Flood attacks to some extent, they can’t conceal their
inherent drawbacks and some application scenarios
constraints yet. The first category can only protect end
system, which provides some service (e.g. web site, email)
for others [3-8]. Nevertheless, for network security appliance
deployed between communicating parties, these methods are
far from effectiveness. For the second category, they have a
precondition that they can see all packets of a session in both
directions[9-13]. However, under asymmetric routing
environment, the precondition does not always hold.

III. THE DARE ARCHITECTURE

The defense architecture, namely DARE is shown in Fig.

1, traffic capturer gets traffic from network interface and

transmits them to traffic dispatcher and attack detector, and

then traffic dispatcher lead them to either of connection

management with SYN or without SYN on the basis of

detector’s output, which has two possibilities: attacked state

and normal state. The basic idea that we create connection

state entry without SYN segment when detector’s output is

attacked state is innovative.
Before discussing the details of our architecture, we

classify the TCP packets by packet header information as
follows:
 SP (SYN packet): the SYN flag is set 1;
 AP (ACK packet): the ACK flag is set 1 and have

no data;

This work is partially supported by The National High Technology

Research and Development Program of China (863 Program),

Grant No. 2011AA010703; The National Information Security

Program of China (242 Program), Grant No. 2012A99; The

National Natural Science Foundation of China (61303260).

International Workshop on Cloud Computing and Information Security (CCIS 2013)

© 2013. The authors - Published by Atlantis Press 165

mailto:yangrong@iie.ac.cn

Traffic Acquire Module

Traffic Dispatcher

D
etecto

r

Connection management
with SYN

Connection management
without SYN

Other Supernatant Module

HALF_CONNECTION_TABLE

COMPLETE_CONNECTION_TABLE

SP Timeout out
Overflow
Connection setup out

connection setup

DP

AP

RFP

Timeout out
Overflow
Connection close out

Fig. 2: Connection Management with SYN

Fig. 1: The DARE Architecture

 DP (DATA packet): the ACK flag is set 1 and data
field is not null;

 RFP (RST or FIN packet): the RST flag is set 1 or
the FIN flag is set 1;

 1stDP (first DATA packet): the DATA packet that
is transferred firstly after connection establishing;

It must be specified that the SYN/ACK packet will be

identified as SP. That’s because, under the asymmetric

routing environment, the traffic acquire module does not

always get the complete three-way handshake packets. But

as so long as either SYN packet or SYN/ACK packet is

received, it must indicates that a connection is establishing.

In the similar way, a connection will be closed when either a

RST packet or FIN packet is received.

A. Attack Detector

Numerous studies show that the traffic generated by
normal Internet behavior of Internet users is stable and
smooth. However, in case of attacked state, many statistical
properties become abnormal. Therefore, we can detect
anomaly by statistical properties. Taking into account of
actual feature of the traffic under the asymmetric routing
environment, we choose SYN rate (the rate for which SYN
packets account in all packets, express as α in follows) and
destination IP address entropy (expressed as s) as

the event to be detected.
The attack detection begins in the empty state, which is

the original state before starting up. Empty state will
transform into counting state immediately when booting
finished. In that state it can receive the data from traffic
acquire module and collect some statistics information, such
as , , etc. If is larger than (the upper bound

of), it will transform into attacked state. If is less than

(the lower bound of), it will transform into normal state.

Otherwise, is between and , it will transition to

suspicious state. In that state it will make further judgment
that checking the value of whether it exceeds the

threshold, which is represented as in the diagram. If the

value of is less than or equal to , detector will

output attacked state. If not, it will output normal state. It
will stay normal state or attacked state for a spell in one
detection period, and then transition to counting state
automatically. The attack detection procedure repeats as

above, and it provides output result for traffic dispatcher
continually.

B. Connection Management with SYN

As Fig. 2 shows, two hash tables are used to record the
state of each connection, the one which is called HTC (Half
Connection Table) keeps the half connection information,
and the other which is called CCT (Completed Connection
Table) maintains the state of completed connection. Upon
receiving a TCP packet, we extract four-tuple (source IP
address, destination IP address, source port number and
destination port number) from packet header, and then use it
to calculate a hash value, which is used as an index into a
hash table. We used a fixed-length queue which
implemented by linked list to resolve the hash collision.
When a connection state entry is not found in the queue, a
new entry is created and inserted into the tail of queue.

A new connection state entry is added into HCT only
when a SP arrives and the entry with same four-tuple is not
existed in that table. If an AP or DP arrives and the entry
with same for-tuple is found in the HCT, this connection
state entry is moved into CCT, which indicates that a new
connection has established. Otherwise either AP or DP is
dropped. The processing of DP has subtle difference from
AP. When a DP is received, we look it up in CCT before
HCT. In case a connection state entry is found in CCT, the
connection state will be updated directly. But for AP, we
searched in HCT immediately. The arriving of RFP denotes
that a connection is end up, and we move the corresponding
connection state out from both tables.

C. Connection Management without SYN

Previous method can only cope with the normal situation,
but not with the situation suffering from attacking. Attacker
exploits the flaw of three-way handshake to create
intentionally a large number of half-open connections until
the system memory resources are exhausted. We make a
assumption that there is no three-way handshake, then there
is no half-open connection, so there is no SYN Flood attack.
The main role of three-way handshake is that communicating
parties informed each other that their send-receive functions
are intact. Since network security appliances are neither
client nor server, but a third-party which is situated between
communicating parties, it can ignore three-way handshake
and only care about data transfer process. That’s where our
basic idea comes from. Based on this idea, we develop a
connection management strategy without SYN packets.

166

COMPLETE_CONNECTION_TABLE

HEADER_DATA_CACHE_TABLE

DP

RFP

Timeout out
Overflow
Connection close out

Timeout out
Overflow

1stDataArrivedFlg = false 1stDataArrivedFlg = true

Fig. 3: Connection Management without SYN

However, a key question at this point must be worked out.
It is how to ensure that the first TCP packet with payload (we
call it first data packet in follows, 1stDP for short) has
arrived. 1stDP is important because many application-level
protocol features are able to be collected from it. Therefore,
this question is the key point of connection management
without SYN.

The size of two windows (receive window and send
window) have reached an agreement when the connection
established, and the value of both sizes are limited. The
number of packets sent by client before it received the first
acknowledgement of the first data packet does not exceed the
receive window size of server. To resolve this question, we
design a buffer window to buffered the first N arrived packet
of a connection, and check their sequence numbers and
packet length. If the reassembled data stream has no gap, we
think the 1stDP has arrived.

Supposing that arrival sequence of 1stDP of connection

is , and the size of buffer window is . Take

= , then the 1stDPs of all

connections must be captured. While
 is hard to derive

theoretically, we conjecture that the value of is finite.

Hence, a enough large N must be existed, for any , ,

i.e., . Therefore, take

, this question can be resolved. In Section IV-A, the

value of is probed.

This method is implemented as Fig. 3, which has a little
difference from Fig. 3. CCT is used to maintain the
completed connection state, and HDCT (Header Data Cache
Table) is designed to record sequence number and length of
the first N arrived packets. A new entry of CCT is created
when a DP arrives and there is no same four-tuple
connection state entry in it, and an existing entry is moved
out from both tables when a RFP is received. The element in
HDCT is created along with the creation of connection state
entry. Compared with connection management with SYN,
the state entry has an additional flag named 1stDPArrivedFlg,
which indicates whether the 1stDP has arrived or not. It is
initialized to false. Before 1stDPArrivedFlg becomes true,
for a connection, the sequence number and packet length of
all DPs are put into the corresponding buffer window until
the buffer window is full. If the buffer window is full and
there is no gap according to the series of sequence number
and packet length, 1stDPArrivedFlg is set to true and this
entry in HDCT is eliminated.

Someone may think that the connection management
without SYN strategy can deal with all situations, and the
strategy with SYN described in Section III-B can be replaced.
Although strategy without SYN can work in normal situation,

its effectiveness is lower than the strategy with SYN,
because the former strategy needs to check whether the
1stDP have arrived or not. Therefore, we still use the
connection management with SYN to cope with normal
situation.

IV. EXPERIMENTAL RESULT

In this section, we carry out some experiments to
evaluate our proposed method. We first measure the
frequency of out-of-sequence 1stDP. Then we evaluate the
performance of our method through two contrast tests in the
same network environment, one is the comparison of packet
loss rate under the same background traffic, and the other is
the comparison of processing capacity in the case of specific
packet loss rate.

A. Out-of-Sequence 1stDP Evaluation

With the purpose of getting the size of buffer window
mentioned in Section III-C, we design this part of experiment.
The data set is captured from a certain ISP network, totally
121G. There are nearly 3,000,000 connections in this data
sets, the frequency of out-of-sequence 1stDP is listed in Fig.
5. It is clear that from the statistics, 99.05% of the 1stDP
have arrived in order, the connection which the 1stDP arrives
in first five data packets accounts for about 100%. Therefore,
we think that the problem that 1stDP arrived out of order
could be solved reasonably if the size of buffer window is set
as 5.

B. Performance Evaluation

From a certain ISP network node, we mirror the traffic,
which contains attack traffic, and led the same traffic into
two systems, the one uses our defense method and the other
uses normal method, which is similar to the method
described in Section III-B. We set the upper bound of α as
20% and the lower bound as 10% according to the network
traffic environment we measured. The size of buffer window
is set as 5 according to previous discussion. Additionally, the
threshold of Entropy (DIP) is set as 4, which is proved to be
effective by AT&T Lab[14].

The packet loss rate of both systems is shown in Fig. 5.
Obviously, the packet loss rate of the system which used our
proposed method is lower than the system with normal
method. Note that, during the test, the event that our detector
outputs attacked state occurs 28 times.

1 2 3 4 5 6
99.0

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100

Sequence

A
c
c
u

m
u

la
ti
o

n
 p

e
rc

e
n

ta
g

e
(%

)

Fig. 4: Frequency of 1stDP out-of-sequence

167

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

Time (min)

p
a

c
k
e

t
lo

s
s
 r

a
te

Our Method

General Method

Fig. 5: Packet loss rate

In the last experiment, we inject concurrently real traffic
including attack traffic into the two systems, the volume of
traffic increased gradually until the packet loss rate reached
ten-thousandth. When the packet loss rate reaches one
thousandth, the volume of traffic injected to the system with
our method is 3.4 Gbps, but that of system with normal
method is 0.9 Gbps less than ours.

To sum up, our approach is able to solve the problem that
existing approach can’t defend against the SYN Flood attack
under the asymmetric routing environment, and improve the
processing capacity of network security appliance deployed
between communicating parties.

V. CONCLUSION AND FUTURE WORK

In allusion to the problem that existing method can’t
effectively protect network infrastructure under the
asymmetric routing environment from SYN Flood attack,
this paper presented DARE, a defense architecture on basis
of statistical attack detection and dual connection
management strategy. The main contribution of this paper is
that a new idea that connection management without SYN
segment. Experimental results show that our proposed
method can filter SYN Flood traffic, and mitigate the
pressure of network infrastructure.

In the future, we will apply our approach to real network
and improve the attack detection method. In addition, we
plan to give theoretical evidence for the conjecture that the
first packet with payload arrives in the first N packets
definitely.

REFERENCES

 [1] "High bandwidth DDoS attacks are now common,

researcher says - Computerworld,". 2013.
 [2] "Prolexic Quarterly Global DDoS Attack Report Q4

2012," Prolexic Technologies, Hollywood 2013.
 [3] W. Eddy, "TCP SYN Flooding Attacks and Common

Mitigations,". 2007.

 [4] D. J. Bernstein, "SYN cookies,".
 [5] A. Zúquete, " Improving the Functionality of Syn

Cookies," Advanced Communications and Multimedia

Security, pp. 57-77, 2002.
 [6] L. Jonathan, "Resisting SYN flood DoS attacks with a

SYN cache," in Proceeding BSDC'02 Proceedings of the

BSD Conference 2002 on BSD Conference, CA, USA, 2002,

pp. 89-97.
 [7] Z. Wu and Z. Chen, "A three-layer defense mechanism

based on web servers against distributed denial of service

attacks," in Communications and Networking in China,

2006. ChinaCom'06. First International Conference on,

Beijing, 2006, pp. 1-5.
 [8] C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spafford,

A. Sundaram, and D. Zamboni, "Analysis of a denial of

service attack on TCP," in Security and Privacy, 1997.

Proceedings., 1997 IEEE Symposium on, 1997, pp. 208-223.
 [9] H. N. Wang, D. L. Zhang and K. G. Shin, "SYN-dog:

Sniffing SYN Flooding Sources," in Proceedings of the 22

nd International Conference on Distributed Computing

Systems (ICDCS'02), Vienna, Austria, 2002, pp. 421 - 428.
[10] T. Nakashima and S. Oshima, "A Detective Method for

SYN Flood Attacks," in Proceedings of the First

International Conference on Innovative Computing,

Information and Control (ICICIC'06), Washington, DC,

USA, 2006, pp. 48-51.
[11] W. Chen and D. Yeung, "Defending Against TCP SYN

Flooding Attacks Under Different Types of IP Spoofing," in

Proceedings of the International Conference on Networking,

International Conference on Systems and International

Conference on Mobile Communications and Learning

Technologies., Mauritius, 2006, pp. 38-43.
[12] C. H. Sun, C. C. Hu, Y. Tang, and B. Liu, "More

Accurate and Fast SYN Flood Detection," in Computer

Communications and Networks, 2009. ICCCN 2009.

Proceedings of 18th Internatonal Conference on, San

Francisco, CA, USA, 2009, pp. 1-6.
[13] H. N. Wang, D. L. Zhang and K. G. Shin, "Detecting

SYN flooding attacks," in INFOCOM 2002. Twenty-First

Annual Joint Conference of the IEEE Computer and

Communications Societies., New York, NY, USA, 2002, pp.

1530-1539.
[14] W. K. Ehrlich, K. Futamura and D. Liu, "An entropy

based method to detect spoofed denial of service (DoS)

attacks," in Telecommunications Modeling, Policy, and

Technology. vol. 44 US: Springer US, 2008, pp. 101-122.

168

