
An Ant Algorithm for Cloud Task Scheduling

Medhat A. Tawfeek, Ashraf El-Sisi

Department of Computer Science

Faculty of Computers and Information

Menoufia University

{medhattaw@yahoo.com, ashrafelsisim@yahoo.com}

Arabi E. keshk, Fawzy A. Torkey

Department of Computer Science

Faculty of Computers and Information

Menoufia University

{arabikeshk@yahoo.com, torkey1951@yahoo.com}

Abstract—Cloud computing is a type of parallel and

distributed system consisting of a collection of

interconnected and virtual computers. One of the

fundamental issues in this environment is related to task

scheduling. Cloud task scheduling is an NP-hard

optimization problem, and many meta-heuristic algorithms

have been proposed to solve it. A good task scheduler should

adapt its scheduling strategy to the changing environment

and the types of tasks. In this paper, modified ant colony

optimization for cloud task scheduling is proposed. The goal

of modification is to enhance the performance of the basic

ant colony optimization algorithm and optimize the task

execution time in view of minimizing the makespan of a

given tasks set. Our approach proposes self-adapting criteria

for the basic ant colony optimization control parameters.

Ant colony optimization algorithm and modified algorithm

have been simulated using Cloudsim toolkit package.

Experimental results showed that modified ant colony

optimization outperformed the ant colony optimization

algorithm.

Keywords— Cloud computing; task scheduling; makespan;

ant colony optimization; CloudSim

I. INTRODUCTION

Cloud computing is one of the rapidly improving
technologies. Users can host different kinds of applications
on the cloud ranging from simple web applications to
scientific workloads [1]. Cloud platforms enable
enterprises to lease computing power in the form of virtual
machines. Because hundreds of thousands of virtual
machines (VMs) are used, it is difficult to manually assign
tasks to computing resources in clouds [2]. So we need an
efficient algorithm for task scheduling in the cloud
environment. Many meta-heuristic algorithms have been
proposed such as ant colony optimization (ACO) algorithm
which is appropriate for dynamic cloud task scheduling [3].
In this paper, a Modified Ant Colony Optimization
(MACO) for cloud task scheduling is proposed. The main
goal of MACO is to enhance the performance of ACO
algorithm. The organization of this paper is as follows.
Section 2 presents some of the related work in this
direction. Section 3 describes the ACO for cloud task
allocation. In section 4, the details about our modifications
of ACO are presented. The implementation and simulation
results are seen in section 5. Finally, section 6 concludes
this paper.

II. RELATED WORK

Millions of user share cloud resources by submitting
their computing task to the cloud system. Scheduling

these millions of task is a challenge to cloud
computing environment. Cloud service scheduling is
categorized at user level and system level [2]. At user
level scheduling deals with problems raised by service
provision between providers and customers [4 and 5].
The system level scheduling handles resource management
within datacenter [2, 6, 7 and 8]. A novel approach of
heuristic-based request scheduling at each server, in each
of the geographically distributed data centers, to globally
minimize the penalty charged to the cloud computing
system is proposed in [9]. Scheduling based genetic
algorithm is proposed in [10]. Ant algorithms are one of
the most popular examples of swarm intelligence systems.
It has already been applied to solve a number of complex
problems, such as task allocation in grid environment [11
and 12]. In this paper, cloud task scheduling based on
MACO approach has been proposed for allocation of
incoming batch jobs to virtual machines (VMs) by
providing self-adapting criteria for the ACO control
parameters to increase the performance of ACO.

III. CLOUD TASK SCHEDULING BASED ACO

The basic idea of ACO is to simulate the foraging
behavior of ant colonies. When an ants group tries to
search for the food, they use a special kind of chemical
pheromone to communicate with each other [13]. Task
scheduling based ACO algorithm is used to decrease the
computation time of tasks. In ACO, all ants are placed at
the starting VMs randomly. During an iteration ants build
solutions to the cloud scheduling problem by moving from
one VM to another for next task until they complete a tour
(all tasks has been allocated). Iterations are indexed by t, 1
< t < tmax, where tmax is the maximum number of iterations
allowed. The pseudo code of cloud task scheduling based
on basic ACO is shown in fig. 1. The main operations of
the basic ACO are initializing pheromone, choosing VM
for next task and phenomenon updating as following:

A. Initializing Pheromone

The amount of virtual pheromone trail τij(t) on the edge
connects task i to VM j. The initial amount of pheromone
on edges is assumed to be a small positive constant τ0
(homogeneous distribution of pheromone at time t = 0).

B. Vm Choosing Rule for Next Task

During an iteration of the ACO algorithm each ant k, k
= 1, ..., m (m is the number of the ants), builds a tour
executing n (n is number of tasks) steps in which a
probabilistic transition rule is applied. The k-ant chooses

International Workshop on Cloud Computing and Information Security (CCIS 2013)

© 2013. The authors - Published by Atlantis Press 169

mailto:medhattaw@yahoo.com
mailto:ashrafelsisim@yahoo.com
mailto:arabikeshk@yahoo.com
mailto:torkey1951@yahoo.com

VM j for next task i with a probability that is computed by
Eq. (1).

𝑃𝑖𝑗
𝑘 𝑡 =

[𝜏𝑖𝑗 𝑡]
𝛼 .[𝜂𝑖𝑗]𝛽

 [𝜏 𝑖𝑠(𝑡)]𝛼𝑠∈𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑘
.[𝜂𝑖𝑠]𝛽

 𝑖𝑓 𝑗 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘

0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

(1)

Input: List of Cloudlet (Tasks) and List of VMs
Output: the best solution for tsaks alloction on VMs
Steps:
 1. Initialize:

 Set Current_iteration_t=1.
 Set Current_optimal_solution=null.

 Set an initial value τij(t)=c for each path between
tasks and VMs.

2. Place the m ants on the starting VMs randomly.
3. For k :=1 to m do

 Place the starting VM of the k-th ant in tabuk.
 Do ants_trip while all ants don't end their trips

 Every ant chooses the VM for the next task
according to formula (1).

 Insert the selected VM to tabuk.
 End Do

4. For k :=1 to m do
 Compute the length Lk of the tour described by the k-

th ant according to formula (4).
 Update the current_optimal_solution with the best

founded solution.
5. For every edge (i,j), apply the local pheromone

according to formula (5).
6. Apply global pheromone update according to formula
(7).
7. Increment Current_iteration_t by one.
8. If (Current_iteration_t < tmax)
 Empty all tabu lists.
 Goto step 2
 Else
 Print current_optimal_solution.
 End If
 Stop

Fig. 1. Pseudo code of basic ACO procedure

Where

 τij(t) shows the pheromone concentration at the t
time on the path between task i and VM j.

 allowedk ={0,1,…,n-1}-tabuk express the allowed
VMs for ant k in next step and tabuk records the
traversed VM by ant k.

 ηij=1/dij is the visibility for the t moment,
calculated with heuristic algorithm and dij which
expresses the expected execution time and transfer
time of the task i on VM j can be computed with Eq.
(2).

𝑑𝑖𝑗 =
𝑇𝐿_𝑇𝑎𝑠𝑘 𝑖

𝑃𝑒_𝑛𝑢𝑚 𝑗 ∗ 𝑃𝑒_𝑚𝑖𝑝𝑠 𝑗 _𝑉𝑀𝑗
+

𝐼𝑛𝑝𝑢𝑡𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒

𝑉𝑀_𝑏𝑤 𝑗
 

Where TL_Taski is the total length of the task that
has been submitted to VMj, Pe_numj is the number
of VMj processors, Pe_mipsj is the MIPS of each
processor of VMj, InputFileSize is the length of the

task before execution and VM_bwj is the
communication bandwidth ability of the VMj.

 Finally the two parameters α and β control the
relative weight of the pheromone trail and the
visibility information respectively.

C. Pheromone Updating

After the completion of a tour, each ant k lays a

quantity of pheromone △ τij
k t computed by Eq. (3) on

each edge (i,j) that it has used.

△ 𝜏𝑖𝑗
𝑘 𝑡 =

𝑄

𝐿𝑘 (𝑡)
 𝑖𝑓(𝑖, 𝑗) ∈ 𝑇𝑘(𝑡)

0 𝑖𝑓(𝑖, 𝑗) ∉ 𝑇𝑘(𝑡)

 

Where T
k
(t) is the tour done by ant k at iteration t, L

k
(t)

is its length (the expected makespan of this tour) that is
computed by Eq. (4), and Q is a adaptive parameter.

𝐿𝑘 𝑡 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑗 ∈𝐽 𝑠𝑢𝑚𝑖∈𝐼𝐽 (𝑑𝑖𝑗) (4)

Where, IJ is the set of tasks that assigned to the VMj.

After each iteration pheromone updating which is
applied to all edges is refreshed by Eq. (5).

𝜏𝑖𝑗 𝑡 = 1 − 𝜌 𝜏𝑖𝑗 𝑡 + ∆𝜏𝑖𝑗 (𝑡) (5)

Where  is the trail decay, 0 <  < 1 and ij(t) is
computed by Eq. (6).

∆𝜏𝑖𝑗 𝑡 = ∆𝜏𝑖𝑗
𝑘𝑚

𝑘=1 (6)

When all ants complete a traverse, an elitist is an ant
which reinforces pheromone on the edges belonging to the
best tour found from the beginning of the trial (T

+
), by a

quantity Q/L
+
, where L

+
 is the length of the best tour (T

+
).

This reinforcement is called global pheromone update and
computed by Eq. (7).

𝜏𝑖𝑗 𝑡 = 𝜏𝑖𝑗 𝑡 +
𝑄

𝐿+ 𝑖𝑓 𝑖, 𝑗 ∈ 𝑇+ (7)

IV. CLOUD TASK SCHEDULING BASED ON PROPOSED

MACO

The MACO algorithm inherits the basic ideas from
ACO algorithm to decrease the computation time of tasks
executing. In this section we introduce MACO algorithm
to improve the performance of the scheduling problems in
cloud computing. It is similar to ACO but has four major
differences as following:

A. Vm Choosing Rule for Next Task

The Rule of Choosing Vm for Next Task is modified to
Eq. (8).

𝑃𝑖𝑗
𝑘 𝑡 =

arg 𝑚𝑎𝑥𝑠∈𝑎𝑙𝑙𝑜𝑤𝑒 𝑑𝑘 { 𝛼 ∗ 𝜏𝑖𝑠 𝑡 + 1−∝ ∗ 𝜂𝑖𝑠 } 𝑖𝑓 𝑞 ≤ 𝑞0

 𝐽 𝑖𝑓 𝑞 > 𝑞0

 (8)

Where α is a parameter that allow a user to control the
relative importance of pheromone trail and q is a random
number uniformly distributed in [0, 1]. If q is greater than
q0, this process is called exploration; otherwise it is called
exploitation [14]. Our principle to progressively adapt the
system by tuning q0 goes from 0 to 1, in order to favor
exploration in the initial part of the algorithm and then

170

favor exploitation. J is a random variable selected
according to the following random-proportional rule
probability distribution (Eq. (9)) which is the probability
that ant k chooses to assign VM j to task i.

𝐽

=

 𝛼 ∗ 𝜏𝑖𝑗 𝑡 + (1 − 𝛼 ∗ 𝜂𝑖𝑗)

 𝛼 ∗ 𝜏𝑖𝑠 𝑡 + (1 − 𝛼 ∗ 𝜂𝑖𝑠)𝑠∈𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑘

𝑖𝑓 𝑗 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘

0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

 (9)

There are two reasons for adopting the above method
to calculate the selection probability. The first is the
simplicity as only one control parameter, i.e. α, is used to
map the relative importance of quantity of pheromone and
the desirability of each movement [15]. The second reason
is the computational efficiency of this method as
multiplication operations are used instead of
exponentiations.

B. Local Pheromone Updating

The local pheromone update rule, which is applied to
all edges, is replaced by Eq. (10).

𝜏𝑖𝑗 𝑡 = 1 − 𝜌𝑙 𝜏𝑖𝑗 𝑡 + ∆𝜏𝑖𝑗 (𝑡) (10)

Where l is the trail decay, 0 < l < 1

The following adaptive formula is proposed to compute

l:

𝜌𝑙 =
| 𝐿𝐾 𝑡 −𝐿+|

𝐿𝐾 𝑡 +𝐿+ + .1 (11)

This formula removes pheromone from edges that
belong to the worst tours. This has the effect of making the
visited edges of worst tours less and less attractive. So,
giving negative reinforcement to bad tours increases the
convergence speed toward good solutions.

C. Global Pheromone Update.

The global pheromone update rule, which is applied to
all edges belonging to the best tour (T+), is modified by
the Eq. (12). The modification of global pheromone
update is applied but in different shape in [6].

𝜏𝑖𝑗 𝑡 = 1 − 𝜌𝑔 𝜏𝑖𝑗 𝑡 +
𝜌𝑔∗𝜆

𝐿+ (12)

Where  is an adaptive coefficient and ρg (0 < ρg < 1) is
the pheromone evaporation parameter of global updating,
they computed by Eq. (13) and Eq. (14) respectively:

𝜆 =
𝑚

𝑡−𝑛𝑖𝑠+1
 (13) and 𝜌g =

𝜌𝑙

2
 (14)

The  coefficient used to control how a solution s
contributes to pheromone information over time, m is the
number of ants, nis represents the number of iterations that
the best solution not changed. This global updating rule
tries to increasing the learning of ants.

D. The Control Parameter α

The Parameter α controls the relative weight of the
pheromone trail and the visibility information, and
computed by the following adaptive formulas:

𝛼 =
𝜌𝑙∗𝑚∗𝐿𝑘(𝑡)

𝑡𝑚𝑎𝑥
 (15)

This adaptive rule tries to enhance the selection of
weight pheromone trail and the visibility information.
When the variation of pheromone concentration is high we
give the visibility information high weight over pheromone
trail and vice versa.

V. IMPLEMENTATION AND EXPERIMENTAL

RESULTS

The proposed MACO and ACO algorithms are
developed and simulated using Cloudsim. The comparison
of MACO and ACO is done using various ranges of task
length and resource capabilities. Cloudsim can be used to
model data centers, host, service brokers, scheduling and
allocation policies of a large scaled cloud platform. Hence,
the researcher has used Cloudsim to model datacenters,
hosts, VMs for experimenting in simulated cloud
environment [16]. The parameters setting of cloud
simulator are shown in Table 1. Our experiments are
implemented with 10 Datacenters with 50 VMs and (100-
1000) tasks under the simulation platform. The length of
the task is from 1000 MI (Million Instructions) to 20000

MI. The parameters (α, β, , tmax, m the number of ants and
Q) considered here are those that affect directly or
indirectly the computation of the algorithm. We tested
several values for each parameter while all the others were
held constant on 100 tasks. The ACO performance for

different values of parameters (α, β, , tmax ,m the number
of ants and Q) has been evaluated. The selected best
parameters of ACO are shown in table 2. The MACO
parameters are calculated using the proposed self-adaptive
formulas. The m and tmax parameters are the same in both
algorithms.

TABLE I. PARAMETERS SETTING OF CLOUD SIMULATOR

Entity

Type

Parameters Value

Task
(cloudlet)

Length of task 1000-20000

Total number of

task

100-1000

Virtual

Machine

Total number of

VMs

50

MIPS 500-2000

VM

memory(RAM)

256-2048

Bandwidth 500-1000

cloudlet Scheduler Space_shared
and

Time_shared

Number of PEs
requirement

1-4

Datacenter Number of

Datacenter

10

Number of Host 2-6

VmScheduler Space_shared

and

 Time_shared

TABLE II. SELECTED PARAMETERS OF ACO

Parameter α β  Q m tmax

Value . 3 1 .4 100 10 100

171

In the following experiments, we assume that tasks are
mutually independent i.e. there is no precedence constraint
between tasks and tasks are not preemptive and they
cannot be interrupted or moved to another processor during
their execution. We compared the average makespan with
different tasks set. The average makespan of the MACO,
ACO algorithm is shown in Fig. 2. It can be seen from the
figure, with the increase of the quantity task, the MACO
takes the time less than ACO algorithm.

Fig. 2. Average makespan of MACO and ACO

The degree of imbalance measures the imbalance
among VMs, which is computed by Eq. (16).

 𝐷𝑖 =
𝑇𝑚𝑎𝑥 +𝑇𝑚𝑖𝑛

𝑇𝑎𝑣𝑔
 (16)

Where, Tmax, Tmin and Tavg are the maximum, minimum
and average execution time of all VMs respectively. The
average degree of imbalance (DI) of each algorithm with
the number of tasks varying from (100) to (1000) is shown
in Fig. 3. It can be seen that the MACO can achieve better
system load balance than ACO.

Fig. 3. Average degree of imbalance (DI) of MACO and ACO

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed MACO algorithm for
improving the cloud tasks scheduling. MACO is used to
find the optimal resource allocation for batch tasks in the
dynamic cloud system and minimize the makespan of tasks
on the entire system. It introduces self-adapting criteria for
the ACO control parameters. We have experimentally

evaluated the MACO and ACO algorithms in applications
with the number of tasks varying from 100 to 1000 using
Cloudsim. Simulation results demonstrate that MACO
algorithm outperforms ACO algorithm. MACO algorithm
can be extended with improvements to handle precedence
between tasks and load balancing.

REFERENCES

[1] A. Weiss, “Computing in the Clouds,” netWorker on Cloud
computing: PC functions move onto the web, vol. 11, pp. 16-25,
2007

[2] F. Chang, J. Ren, and R. Viswanathan, “Optimal Resource
Allocation in Clouds” in 2010 IEEE 3rd International Conference
on Cloud Computing, pp.418-425, 2010

[3] Paul, M., Sanyal, G., "Survey and analysis of optimal scheduling
strategies in cloud environment", IEEE International Conference
on Information and Communication Technologies (WICT), pp. 789
– 792, 2012

[4] Qiyi, H., Tinglei, H., “An Optimistic Job Scheduling Strategy
based on QoS for Cloud Computing” in 2010 IEEE International
Conference on Intelligent Computing and Integrated Systems
(ICISS), pp.673-675, 2010

[5] Meng Xu, Lizhen Cui, Haiyang Wang, Yanbing Bi, "A Multiple
QoS Constrained Scheduling Strategy of Multiple Workflows
for Cloud Computing", IEEE International Conference on Parallel
and Distributed Processing with Applications, PP. 629 - 634, 2009

[6] Y. Gao et al., "A multi-objective ant colony system algorithm for
virtual machine placement in cloud computing" J. Comput. System
Sci. (2013) http://dx.doi.org/10.1016/j.jcss.2013.02.004

[7] B. Rajkumar, B. Anton, and A. Jemal, “Energy efficient
management of data center resources for computing: Vision,
architectural elements and open challenges,” in International
Conference on Parallel and Distributed Processing Techniques and
Applications, Jul. 2010

[8] M. Mazzucco, D. Dyachuk, and R. Deters, “Maximizing Cloud
Providers’ Revenues via Energy Aware Allocation Policies,” in
2010 IEEE 3rd International Conference on Cloud Computing.
IEEE, pp. 131–138, 2010

[9] Boloor, K., Chirkova, R., Salo, T., Viniotis, Y., "Heuristic-
Based Request Scheduling Subject to a Percentile Response
Time SLA in a Distributed Cloud". IEEE International
Conference on Global Telecommunications Conference
(GLOBECOM), PP.1-6 , 2010

[10] Chenhong Zhao, Shanshan Zhang, Qingfeng Liu, Jian Xie,
Jicheng Hu, "Independent Tasks Scheduling Based on Genetic
Algorithm in Cloud Computing", IEEE International Conference
on Wireless Communications, Networking and Mobile Computing,
PP. 1 – 4, 2009

[11] Manpreet Singh, “GRAAA: Grid Resource Allocation Based on
Ant Algorithm” in 2010 Academy Publisher DOI:
10.4304/jait.1.3.133-135, 2010

[12] Lorpunmanee, S., Sap, M.N, Abdul Hanan Abdullah, A.H., “An
Ant Colony Optimization for Dynamic Job Scheduling in Grid
Environment” in Proceedings of World Academy of Science,
English and Technology Volume 23 august 2007, ISSN 1307-6884,
2007

[13] M. Dorigo, M. Birattari, T. Stutzel, “Ant colony optimization”, in
IEEE Computational Intelligence Magazine, pp.28-39, 2006.

[14] M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by
a colony of cooperating agents, IEEE Trans. Syst. Man Cybernet.
Part B: Cybernet-ics 26 (1) pp. 29–41, 1996

[15] V. Maniezzo, Exact and approximate nondeterministic tree-search
procedures for the quadratic assignment problem, INFORMS J.
Comput. 11 (4) pp. 358–369, 1999

[16] Ghalem, B., Fatima Zohra, T., and Wieme, Z. “Approaches to
Improve the Resources Management in the Simulator CloudSim”
in ICICA 2010, LNCS 6377, pp. 189–196, 2010.

0
100
200
300
400
500
600
700
800

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

M
ak

e
sp

an

Number of Tasks

ACO

MACO

0

0.5

1

1.5

2

2.5

3

3.5

D
e

gr
e

e
 o

f
Im

b
al

an
ce

Number of Tasks

ACO

MACO

172

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6132196
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5207830
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5207830
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5207830
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5682081
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5682081
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5682081
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5300798

