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Abstract—Cloud computing is a type of parallel and 

distributed system consisting of a collection of 

interconnected and virtual computers. One of the 

fundamental issues in this environment is related to task 

scheduling. Cloud task scheduling is an NP-hard 

optimization problem, and many meta-heuristic algorithms 

have been proposed to solve it. A good task scheduler should 

adapt its scheduling strategy to the changing environment 

and the types of tasks. In this paper, modified ant colony 

optimization for cloud task scheduling is proposed. The goal 

of modification is to enhance the performance of the basic 

ant colony optimization algorithm and optimize the task 

execution time in view of minimizing the makespan of a 

given tasks set. Our approach proposes self-adapting criteria 

for the basic ant colony optimization control parameters. 

Ant colony optimization algorithm and modified algorithm 

have been simulated using Cloudsim toolkit package. 

Experimental results showed that modified ant colony 

optimization outperformed the ant colony optimization 

algorithm. 

Keywords— Cloud computing; task scheduling; makespan; 

ant colony optimization; CloudSim  

I.  INTRODUCTION 

Cloud computing is one of the rapidly improving 
technologies. Users can host different kinds of applications 
on the cloud ranging from simple web applications to 
scientific workloads [1]. Cloud platforms enable 
enterprises to lease computing power in the form of virtual 
machines. Because hundreds of thousands of virtual 
machines (VMs) are used, it is difficult to manually assign 
tasks to computing resources in clouds [2]. So we need an 
efficient algorithm for task scheduling in the cloud 
environment.  Many meta-heuristic algorithms have been 
proposed such as ant colony optimization (ACO) algorithm 
which is appropriate for dynamic cloud task scheduling [3]. 
In this paper, a Modified Ant Colony Optimization 
(MACO) for cloud task scheduling is proposed. The main 
goal of MACO is to enhance the performance of ACO 
algorithm. The organization of this paper is as follows. 
Section 2 presents some of the related work in this 
direction. Section 3 describes the ACO for cloud task 
allocation. In section 4, the details about our modifications 
of ACO are presented. The implementation and simulation 
results are seen in section 5.  Finally, section 6 concludes 
this paper. 

II. RELATED WORK  

Millions of user share cloud resources by submitting 
their computing task to the cloud system.  Scheduling  

these  millions  of  task  is  a  challenge  to  cloud  
computing environment. Cloud service scheduling is 
categorized at user level and system level [2].  At  user  
level  scheduling  deals  with problems  raised  by  service  
provision  between  providers and  customers [4 and 5].  
The system level scheduling handles resource management 
within datacenter [2, 6, 7 and 8]. A novel approach  of 
heuristic-based request scheduling at each server, in each 
of  the  geographically distributed data centers,  to globally 
minimize  the  penalty  charged  to  the  cloud  computing 
system  is  proposed  in  [9]. Scheduling based genetic 
algorithm is proposed in [10].  Ant algorithms are one of 
the most popular examples of swarm intelligence systems. 
It has already been applied to solve a number of complex 
problems, such as task allocation in grid environment [11 
and 12]. In this paper, cloud task scheduling based on 
MACO approach has been proposed for allocation of 
incoming batch jobs to virtual machines (VMs) by 
providing self-adapting criteria for the ACO control 
parameters to increase the performance of ACO. 

III.  CLOUD TASK SCHEDULING BASED ACO 

The basic idea of ACO is to simulate the foraging 
behavior of ant colonies. When an ants group tries to 
search for the food, they use a special kind of chemical 
pheromone to communicate with each other [13]. Task 
scheduling based ACO algorithm is used to decrease the 
computation time of tasks. In ACO, all ants are placed at 
the starting VMs randomly.  During an iteration ants build 
solutions to the cloud scheduling problem by moving from 
one VM to another for next task until they complete a tour 
(all tasks has been allocated). Iterations are indexed by t, 1 
< t < tmax, where tmax is the maximum number of iterations 
allowed. The pseudo code of cloud task scheduling based 
on basic ACO is shown in fig. 1. The main operations of 
the basic ACO are initializing pheromone, choosing VM 
for next task and phenomenon updating as following: 

A. Initializing Pheromone 

The amount of virtual pheromone trail τij(t) on the edge 
connects task i to VM j. The initial amount of pheromone 
on edges is assumed to be a small positive constant τ0 
(homogeneous distribution of pheromone at time t = 0). 

B.  Vm Choosing Rule for Next Task 

During an iteration of the ACO algorithm each ant k, k 
= 1, ..., m (m is the number of the ants), builds a tour 
executing n (n is number of tasks) steps in which a 
probabilistic transition rule is applied. The k-ant chooses 
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VM j for next task i with a probability that is computed by 
Eq. (1). 

𝑃𝑖𝑗
𝑘  𝑡 =  

[𝜏𝑖𝑗  𝑡 ]
𝛼 .[𝜂𝑖𝑗 ]𝛽

 [ 𝜏 𝑖𝑠(𝑡)]𝛼𝑠∈𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑘
.[𝜂𝑖𝑠 ]𝛽

 𝑖𝑓 𝑗 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘

0,               𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒                                     

             

(1) 

 

Input: List of Cloudlet (Tasks) and List of VMs  
Output: the best solution for tsaks alloction on VMs 
Steps: 
 1. Initialize:  

  Set Current_iteration_t=1. 
  Set Current_optimal_solution=null. 

          Set an initial value τij(t)=c for each path between 
tasks and VMs. 

2.  Place the m ants on the starting VMs randomly. 
3.  For k :=1 to m do 

  Place the starting VM of the k-th ant in tabuk. 
  Do ants_trip while all ants don't end their trips 

             Every ant chooses the VM for the next task 
according  to formula (1). 

      Insert the selected VM to tabuk. 
  End Do 

4. For k :=1 to m do  
          Compute the length Lk of the tour described by the k-

th ant according to formula (4). 
        Update the current_optimal_solution with the best 

founded solution. 
5. For every edge (i,j), apply the local pheromone  

according to  formula (5). 
6. Apply global pheromone update according to  formula 
(7). 
7. Increment Current_iteration_t by one. 
8. If (Current_iteration_t < tmax)   
       Empty all tabu lists. 
       Goto step 2 
    Else 
       Print current_optimal_solution. 
    End If 
 Stop 

Fig. 1.  Pseudo code of basic ACO procedure 

Where  

 τij(t) shows the pheromone concentration at the t 
time on the path between task i and VM j.  

 allowedk ={0,1,…,n-1}-tabuk  express the allowed 
VMs for ant k in next step and tabuk   records  the 
traversed VM by ant k. 

  ηij=1/dij  is the visibility for the t moment, 
calculated with heuristic algorithm and dij which 
expresses the expected execution time and transfer 
time of the task i on VM j can be computed with Eq. 
(2). 

𝑑𝑖𝑗 =
𝑇𝐿_𝑇𝑎𝑠𝑘 𝑖

𝑃𝑒_𝑛𝑢𝑚 𝑗  ∗ 𝑃𝑒_𝑚𝑖𝑝𝑠 𝑗 _𝑉𝑀𝑗
+

𝐼𝑛𝑝𝑢𝑡𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒

𝑉𝑀_𝑏𝑤 𝑗
  

Where TL_Taski is the total length of the task that 
has been submitted to VMj, Pe_numj is the number 
of VMj processors, Pe_mipsj is the MIPS of each 
processor of VMj, InputFileSize is the length of the 

task before execution and VM_bwj is the 
communication bandwidth ability of the VMj. 

 Finally the two parameters α and β control the 
relative weight of the pheromone trail and the 
visibility information respectively. 

C. Pheromone Updating 

After the completion of a tour, each ant k lays a 

quantity of pheromone △ τij
k t  computed by Eq. (3) on 

each edge (i,j) that it has used.  

△ 𝜏𝑖𝑗
𝑘  𝑡 =  

𝑄

𝐿𝑘 (𝑡)
       𝑖𝑓(𝑖, 𝑗) ∈ 𝑇𝑘(𝑡)

0                 𝑖𝑓(𝑖, 𝑗)  ∉ 𝑇𝑘(𝑡)

            

Where T
k
(t) is the tour done by ant k at iteration t, L

k
(t) 

is its length (the expected makespan of this tour) that is 
computed by Eq. (4), and Q is a adaptive parameter. 

𝐿𝑘 𝑡 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑗 ∈𝐽  𝑠𝑢𝑚𝑖∈𝐼𝐽 (𝑑𝑖𝑗 )   (4) 

Where, IJ is the set of tasks that assigned to the VMj. 

After each iteration pheromone updating which is 
applied to all edges is refreshed by Eq. (5). 

𝜏𝑖𝑗  𝑡 =  1 − 𝜌 𝜏𝑖𝑗  𝑡 + ∆𝜏𝑖𝑗 (𝑡)  (5) 

Where  is the trail decay, 0 <  < 1 and ij(t) is 
computed by Eq. (6). 

∆𝜏𝑖𝑗  𝑡 =  ∆𝜏𝑖𝑗
𝑘𝑚

𝑘=1    (6) 

When all ants complete a traverse, an elitist is an ant 
which reinforces pheromone on the edges belonging to the 
best tour found from the beginning of the trial (T

+
), by a 

quantity Q/L
+
, where L

+
 is the length of  the best tour (T

+
). 

This reinforcement is called global pheromone update and 
computed by Eq. (7). 

𝜏𝑖𝑗  𝑡 = 𝜏𝑖𝑗  𝑡 +  
𝑄

𝐿+   𝑖𝑓  𝑖, 𝑗  ∈ 𝑇+          (7) 

IV. CLOUD TASK SCHEDULING BASED ON PROPOSED 

MACO 

The MACO algorithm inherits the basic ideas from 
ACO algorithm to decrease the computation time of tasks 
executing. In this section we introduce MACO algorithm 
to improve the performance of the scheduling problems in 
cloud computing. It is similar to ACO but has four major 
differences as following: 

A. Vm Choosing Rule for Next Task  

The Rule of Choosing Vm for Next Task is modified to 
Eq. (8). 

𝑃𝑖𝑗
𝑘  𝑡 =

 
arg  𝑚𝑎𝑥𝑠∈𝑎𝑙𝑙𝑜𝑤𝑒 𝑑𝑘 { 𝛼 ∗ 𝜏𝑖𝑠 𝑡  +   1−∝ ∗ 𝜂𝑖𝑠  } 𝑖𝑓 𝑞 ≤  𝑞0

 𝐽                                                                                           𝑖𝑓 𝑞 >  𝑞0

      

    (8) 

Where α is a parameter that allow a user to control the 
relative importance of pheromone trail and q is a random 
number uniformly distributed in [0, 1]. If q is greater than 
q0, this process is called exploration; otherwise it is called 
exploitation [14]. Our principle to progressively adapt the 
system by tuning q0 goes from 0 to 1, in order to favor 
exploration in the initial part of the algorithm and then 
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favor exploitation. J is a random variable selected 
according to the following random-proportional rule 
probability distribution (Eq. (9)) which is the probability 
that ant k chooses to assign VM j to task i. 

𝐽

=  

 𝛼 ∗ 𝜏𝑖𝑗  𝑡  + ( 1 − 𝛼 ∗ 𝜂𝑖𝑗 )

  𝛼 ∗ 𝜏𝑖𝑠 𝑡  + ( 1 − 𝛼 ∗ 𝜂𝑖𝑠)𝑠∈𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑘

𝑖𝑓 𝑗 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘

0,                                                                              𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒 

  

          (9) 

There are two reasons for adopting the above method 
to calculate the selection probability. The first is the 
simplicity as only one control parameter, i.e. α, is used to 
map the relative importance of quantity of pheromone and 
the desirability of each movement [15]. The second reason 
is the computational efficiency of this method as 
multiplication operations are used instead of 
exponentiations. 

B. Local Pheromone Updating 

The local pheromone update rule, which is applied to 
all edges, is replaced by Eq. (10). 

𝜏𝑖𝑗  𝑡 =  1 − 𝜌𝑙 𝜏𝑖𝑗  𝑡 + ∆𝜏𝑖𝑗 (𝑡)  (10)    

Where l is the trail decay, 0 < l < 1  

The following adaptive formula is proposed to compute 

l: 

𝜌𝑙 =  
| 𝐿𝐾   𝑡 −𝐿+|

𝐿𝐾   𝑡 +𝐿+ + .1   (11) 

This formula removes pheromone from edges that 
belong to the worst tours. This has the effect of making the 
visited edges of worst tours less and less attractive. So, 
giving negative reinforcement to bad tours increases the 
convergence speed toward good solutions. 

C. Global Pheromone Update.  

The global pheromone update rule, which is applied to 
all edges belonging to the best tour (T+), is modified by 
the Eq. (12).  The modification of global pheromone 
update is applied but in different shape in [6]. 

𝜏𝑖𝑗  𝑡 =  1 − 𝜌𝑔 𝜏𝑖𝑗  𝑡 +  
𝜌𝑔∗𝜆

𝐿+    (12) 

Where  is an adaptive coefficient and ρg (0 < ρg < 1) is 
the pheromone evaporation parameter of global updating, 
they computed by Eq. (13) and Eq. (14) respectively: 

𝜆 =
𝑚

𝑡−𝑛𝑖𝑠+1
       (13)          and                   𝜌g =

𝜌𝑙

2
             (14) 

The  coefficient used to control how a solution s 
contributes to pheromone information over time, m is the 
number of ants, nis represents the number of iterations that 
the best solution not changed. This global updating rule 
tries to increasing the learning of ants. 

D.  The Control Parameter α  

The Parameter α controls the relative weight of the 
pheromone trail and the visibility information, and 
computed by the following adaptive formulas: 

𝛼 =
𝜌𝑙∗𝑚∗𝐿𝑘(𝑡)

𝑡𝑚𝑎𝑥
    (15) 

This adaptive rule tries to enhance the selection of 
weight pheromone trail and the visibility information. 
When the variation of pheromone concentration is high we 
give the visibility information high weight over pheromone 
trail and vice versa. 

V. IMPLEMENTATION AND EXPERIMENTAL 

RESULTS 

The proposed MACO and ACO algorithms are 
developed and simulated using Cloudsim. The comparison 
of MACO and ACO is done using various ranges of task 
length and resource capabilities. Cloudsim can be used to 
model data centers, host, service brokers, scheduling and 
allocation policies of a large scaled cloud platform. Hence, 
the researcher has used Cloudsim to model datacenters, 
hosts, VMs for experimenting in simulated cloud 
environment [16].   The parameters setting of cloud 
simulator are shown in Table 1. Our experiments are 
implemented with 10 Datacenters with 50 VMs and (100-
1000) tasks under the simulation platform. The length of 
the task is from 1000 MI (Million Instructions) to 20000 

MI. The parameters (α, β, , tmax, m the number of ants and 
Q) considered here are those that affect directly or 
indirectly the computation of the algorithm. We tested 
several values for each parameter while all the others were 
held constant on 100 tasks. The ACO performance for 

different values of parameters (α, β,  , tmax ,m the number 
of ants and Q) has been  evaluated.  The selected best 
parameters of ACO are shown in table 2. The MACO 
parameters are calculated using the proposed self-adaptive 
formulas. The m and tmax parameters are the same in both 
algorithms. 

TABLE I.  PARAMETERS SETTING OF CLOUD SIMULATOR 

Entity 

Type 

Parameters Value 

Task 
(cloudlet) 

Length of task 1000-20000 

Total number of 

task 

100-1000 

Virtual 

Machine 

Total number of 

VMs 

50 

MIPS 500-2000 

VM 

memory(RAM) 

256-2048 

Bandwidth 500-1000 

cloudlet Scheduler Space_shared 
and 

Time_shared 

Number of PEs 
requirement 

1-4 

Datacenter Number of 

Datacenter 

10 

Number of Host 2-6 

VmScheduler Space_shared 

and 

 Time_shared 

TABLE II.  SELECTED PARAMETERS OF ACO 

Parameter α β  Q m tmax 

Value . 3 1 .4 100 10 100 

 

171



In the following experiments, we assume that tasks are 
mutually independent i.e. there is no precedence constraint 
between tasks and tasks are not preemptive and they 
cannot be interrupted or moved to another processor during 
their execution. We compared the average makespan with 
different tasks set. The average makespan of the MACO, 
ACO algorithm is shown in Fig. 2. It can be seen from the 
figure, with the increase of the quantity task, the MACO 
takes the time less than ACO algorithm. 

  

 

Fig. 2.  Average makespan of MACO and ACO 

The degree of imbalance measures the imbalance 
among VMs, which is computed by Eq. (16). 

 𝐷𝑖 =
𝑇𝑚𝑎𝑥 +𝑇𝑚𝑖𝑛

𝑇𝑎𝑣𝑔
   (16) 

Where, Tmax, Tmin and Tavg are the maximum, minimum 
and average execution time of all VMs respectively. The 
average degree of imbalance (DI) of each algorithm with 
the number of tasks varying from (100) to (1000) is shown 
in Fig. 3. It can be seen that the MACO can achieve better 
system load balance than ACO. 

 

Fig. 3. Average degree of imbalance (DI) of MACO and ACO 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper we have proposed MACO algorithm for 
improving the cloud tasks scheduling. MACO is used to 
find the optimal resource allocation for batch tasks in the 
dynamic cloud system and minimize the makespan of tasks 
on the entire system. It introduces self-adapting criteria for 
the ACO control parameters. We have experimentally 

evaluated the MACO and ACO algorithms in applications 
with the number of tasks varying from 100 to 1000 using 
Cloudsim. Simulation results demonstrate that MACO 
algorithm outperforms ACO algorithm. MACO algorithm 
can be extended with improvements to handle precedence 
between tasks and load balancing. 
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