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Abstract---JavaScript is used as an attack vector to infect 

webpages to gain access to user’s information. We present a tool 

that will dynamically analyze and perform bivariate classification 

of webpages as malicious or benign. We categorized the general 

behavior of JavaScript using datasets of known benign and 

malicious JavaScript by using a classifier which is trained on the 

basis of difference between function calls made by malicious and 

benign JavaScript and identification of Iframe tag in them. A 

Script is then matched to those categorizations to classify its 

behavior as malicious or benign. Here we have developed a light 

weight malicious JavaScript detection approach which can be 

used in real time as most of the existing techniques perform 

offline analysis. 

 

Keywords---malicious JavaScript, dynamic analysis, 

classification, caffeine monkey 

I. INTRODUCTION 

The increased amount of information exchange over internet 

has focused attackers towards web attacks in order to steal 

user’s personal and financial information. Attackers are using 

different type of web technologies as their attack vectors 

which include different type of scripting languages such as 

JavaScript, VBScript and many more. In web environment the 

scripting attacks through JavaScript have become a common 

but severe security threat. The attacker launches these attacks 

to leak information, steal passwords or load malware into the 

victim’s system through vulnerable JavaScript code. A recent 

2013 report from Sophos Labs indicates that 85.2 % of all 

website attacks are due to “drive by redirect” attacks using 

malicious JavaScript [11]. 

JavaScript is an object oriented scripting language which 

has been widely adopted as a client side scripting language. It 

can be embedded in HTML and can interact with Document 

Object Model of HTML. It is used to perform various functions 

over client side for eg: form validations, access browser 

properties, create highly responsive interfaces that improve 

user’s experience. These capabilities can endanger the end-user 

if the Web page is infected with malicious JavaScript code [9]. 

JavaScript can be disabled in any browser but 89.2% of the 

websites use JavaScript as client side scripting language [16], 

so it is not a realistic option to surf web with JavaScript 

disabled. Malicious JavaScript code is injected in web pages 

using different attack techniques such as cross site scripting. 

Moreover, attackers obfuscate this code to avoid detection 

mechanisms. Obfuscated code is one which is difficult to 

understand by human analysis; it is done to hide the actual 

meaning of the code. This infected code is used to spread 

worms, install Malware and conduct different types of attacks 

such as click jacking, cookie stealing. For Example: An 

attacker can easily put a hidden Iframe tag in a webpage and 

can redirect user to a malicious web page. 

II. RELATED WORK 

Today most of the approaches used to counter malicious 

websites are infrastructure-based [7, 8]. In these approaches 

different websites are crawled and analyzed continuously. 

They use different type of static and dynamic analysis 

methods and store the analysis results in a database available 

for offline analysis. The systems provide browser plugins 

which check the user’s requested URL against the database. If 

the URL is classified as malicious in the database, the user is 

warned against visiting the website. The advantage of this 

approach is that it is instantly usable by end-users. These 

approaches are flexible as they can use any type of technique 

to detect malicious JavaScript but these approaches suffer 

from inconsistency issues because a user is warned based on 

the classification that is stored in the database. The problem is 

that there is no assurance that the website visited by the user 

has not been compromised since the analysis is done in an 

offline mode due to huge performance burdens. 

Ben Feinstein et al. [1] proposed a system, in which they 

examined the current state of JavaScript obfuscation and 

evasion techniques, approaches for collecting JavaScript 

samples from the wild, and developed methods for analyzing 

the collected scripts. They developed a suite of tools for 

collecting and indexing JavaScript, interpreting the scripts in a 

sandboxed environment, and then performing functional 

analysis for manual and automated detection mechanisms. 

They developed a tool Caffeine Monkey [1] that sandboxes 

the JavaScript. It is an open source modification of spider 

monkey [12]. They classify JavaScript on the basis of 

difference between numbers of function calls made by benign 

and malicious JavaScript. The major drawback is that the 

mechanism is not automated and hence analysis of malware 

infected JavaScript has to be done in an offline mode. 
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Moreover the Caffeine Monkey Engine is unable to interpret 

JavaScript in which DOM (Document object Model) 

functionality is used. DOM is a programming API for HTML 

documents [14]. As most of the websites today use DOM 

along with JavaScript so the existing tool can’t be used to 

detect malwares efficiently. 

M. Cova et al [2] presents a tool called JSAND (JavaScript 

Anomaly-based Analysis and Detection) The tool is publically 

available where a user can  submit URLs and JavaScript files 

to check whether they exhibit some malicious behavior or not. 

It is an instrumented browser emulator that executes the 

JavaScript code to check its runtime behavior as it will 

actually behave in a user browser. The system uses a number 

of features which capture intrinsic characteristics of attacks 

along with machine learning techniques for anomaly detection 

which is detecting potentially malicious behavior. 

Additionally, the system is able to analyze obfuscated code 

and generates attack signatures for signature-based detection 

systems. The major drawback is that the technique is not 

automated as the user has to manually enter each URL to 

check whether it is benign or malicious. 

Wang et al. [3] presents a system utilizing a honeypot within a 

virtual machine (VM). Within the VM, the tool creates an 

instance of the Microsoft Internet Explorer, navigates to a 

specific URL, and waits for few minutes. Changes to the 

VM’s file system and registry are flagged. If a change to the 

file system outside of the temporary directory of the browser is 

detected, the site is classified as malicious. The system then 

shuts down the potentially infected VM and starts a clean one 

to analyze the next URL. To determine if an exploit just works 

against a specific combination of versions of Microsoft 

Internet Explorer and the underlying operating system (or if it 

even is a zero-day exploit), a pipeline of such virtual machines 

is used, each covering a different patch level. The problem in 

this approach is that it can be used only for Internet Explorer.  

Another problem of this approach is that it does not scale well. 

The analysis effort can be nicely parallelized on redundant 

hardware but analyzing millions of websites per day can be 

rather tedious and costly job. Moreover the frequency of 

analysis of a website is also important because if a website 

later gets infected; it should be crawled and analyzed as 

quickly as possible. Cox et al. [4] proposed a Virtual Machine 

based technique that runs on client side, thus partly leveraging 

the problem of scalability. This introduced client-side 

approaches to counter malicious websites. But the problem is 

that the users now have to invest in additional hardware to run 

a virtual machine and additional detection software. 

Several static techniques are also used for identifying 

malicious JavaScript. Saurabh Jain et al. [6] proposed a 

signature and regular expression based matching technique to 

identify malicious JavaScript code.  Mohammad Fraiwan et al. 

[5] proposed a technique based on a classification model. They 

analyzed the behavior and properties of JavaScript code to 

point out its key features using static analysis techniques. Then 

classifiers were trained on malicious and benign data. The main 

problem of these techniques is that they do not check the actual 

behavior of JavaScript. Moreover, they do not consider the 

obfuscated JavaScript as it is difficult to perform static analysis 

techniques on obfuscated JavaScript code which is otherwise a 

bigger threat and a security challenge. 

III. DETECTION TECHNIQUE FOR DYNAMIC ANALYSIS OF 

JAVASCRIPT 

For developing a detection technique for Dynamic analysis, 

we have to run JavaScript in a sandboxed environment. We 

extracted several features of known benign and malicious 

JavaScript after its execution in sandboxed environment and 

then compare the features of a new script to those of malicious 

and benign. To automate the detection mechanism we have 

used a classifier.  The base of our dynamic analysis is the 

caffeine monkey engine [1]. Caffeine Monkey engine 

interprets the JavaScript and creates a log of function calls 

made by that JavaScript along with the deobfuscated 

JavaScript. As discussed earlier in section II caffeine monkey 

engine cannot interpret JavaScript containing DOM. we 

customized the Caffeine Monkey engine and to do so, we have 

defined the document, window, location, navigator objects of 

DOM and its properties in it. The log generated by the 

customized Caffeine Monkey engine is then used to obtain 

features for classification of a script as malicious or benign. 

A. Features Used For Classification 

We used 8 features to compare general behavior of malicious 

and benign JavaScript and then classify a script as malicious 

or benign. Out of eight, seven are based on the frequency of 

the functions called by the JavaScript code and eighth is based 

on detecting the presence of Iframe tag inside the JavaScript. 

These features are obtained from the log created by our 

customized Caffeine Monkey engine.   

1) Function Calls 

Combining the existing approaches which could count 6 

function calls, we have counted one additional function 

‘Unescape’. The complete list of functions counted is 

described below: 

 Escape: The escape function encodes a string and makes 

it portable, so it can be transmitted across any network to 

any computer that supports ASCII characters.[15] 

 Eval: The Eval function executes or evaluates and 

argument. If the argument is JavaScript code the function 

executes it otherwise it evaluates it.[15] 

 String Instantiation: Create a new string object. Whenever 

a New String is created we count it. 

 Element Instantiation: Create a new element object. 

Whenever a New Element Object is created we count it. 

 Object Instantiation: Create a new object instance. 

Whenever a new object is created excluding string and 

element objects we count it. 

 Document. Write: A method that writes HTML 

expressions or JavaScript code to a document. 
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 Unescape: The Unescape function decodes an encoded 

string. 

2) Iframe Tag    

In our approach we have been able to detect malware injected 

using Iframe tag which has become a serious attack method 

and usually goes undetected by present detection system. 

The <Iframe> tag specifies an inline frame which is used to 

embed another document within the current HTML document 

and is thus used quite often used by attackers to inject 

malicious content on a website [6]. Iframe tag can also be 

injected via JavaScript in a webpage using its document.write 

method as shown in figure 1. By using an Iframe an attacker 

can redirect a user from a benign website to a malicious 

webpage. Moreover an attacker can hide an Iframe, so that the 

users don’t even know that they became victim of an attack. 

There are several ways of hiding Iframe as it has attributes 

like height, width, style so this tag can easily be used for 

creating severe attacks as a common user visiting a website 

with hidden frame has no idea that he or she is a victim of 

exploit. Ways of hiding an Iframe tag: setting its height=1 and 

width=1, style=”visibility: hidden” or style=”opacity: 0”. If an 

Iframe tag embedded in JavaScript has such attributes then it 

is possible that it is a malicious JavaScript. So we considered 

an Iframe tag embedded in JavaScript as one of the features to 

classify a Script. Figure 1 presents an example of how an 

Iframe tag can be used inside JavaScript and redirect a user to 

some malicious webpage. 

 

Figure 1. Example of Iframe tag embedded in JavaScript 

. 

IV. CLASSIFICATION MODEL 

Figure 2 shows the steps involved in classification of a 

JavaScript as malicious or benign.  

 

 

Figure 1. Classification Model 

A. Sample Data Collection  

To train a classifier we need both benign and malicious 

JavaScript samples of websites. For benign samples we 

extracted JavaScript from front pages of top websites rated on 

Alexa.com [11]. We obtained 160 malicious samples. Out of 

those 160 samples 10 were identical so we discarded them and 

trained the classifier using 100 samples. 50 samples were kept 

reserved for testing purpose. 

B. Feature Calculation  

For calculating our features we submit every JavaScript 

sample to the customized Caffeine Monkey engine that 

generates a log of all the function calls made by JavaScript 

along with the deobfuscated JavaScript. The log is then parsed 

using a python script to calculate the frequency of the seven 

function calls made by the JavaScript and to check whether 

JavaScript contains Iframe tag in it as explained in section III-

A. The values of the frequency of each of the seven function 

calls and the Iframe tag are stored in a database. The values 

obtained act as features or independent variables for training 

of our classifier. Classifier training is discussed in next step. 

After calculating and storing the values of features in the 

database we exported the database to an Excel file so that it 

can be used for classifier training.   

C. Classifier Training  

As our current model does classification as binary that is 

either malicious (1) or benign (0) we used binary logistic 

regression as our classifier. IBM’s SPSS software [17] is used 

which provides us binary logistic regression. Binary logistic 

regression is a type of regression analysis which is used for 

predicting the outcome of a categorical dependent variable (a 

dependent variable can take only two possible values that is 1 

or 0) based on one or more independent variables [13]. It uses 

a logistic function shown in equation 1, which tells us to 

which class a new observation will belong. 

           Where   

 

Equation 1. Logistic Function [13] 

In Figure x1, x2,...,xk  are the independent variables or 

features and t is the measure of the total contribution of x 

variables.  , are the parameters calculated by 

logistic regression which will be used to classify a new 

observation.  

The value of F(t) lies between 0 and 1.Default cutoff for 

binary logistic regression is 0.5 means if 0<F(t)<0.5 then the 

observation belongs to category 0 and if 0.5<F(t)<1 then the 

observation belongs to category 1. In our research 

classification of JavaScript as malicious (1) or benign (0) is 

dependent variable and the 8 features we are calculating are 
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the independent variables. Here the value of k=8.  The eight 

features X1, X2, X3, X4, X5, X6, X7, X8 are eval, escape, 

Unescape, string instance, element_instance, object_instance, 

Document.write, Iframe respectively.   

We submit a file to SPSS containing all the eight features for 

all the samples along with their classification as benign (0) or 

malicious (1). Then we performed binary logistic regression 

over it. After training the logistic regression gives us the 

values of β0, β1, β2 , ..., β8 that will be used to classify a new 

script as malicious or benign.  

D. Classification of JavaScript  

The Figure 3 shows the steps in classification of a new 

JavaScript. 

 
Figure 2. Classification of JavaScript 

 

To classify a new script first we obtain features of that 

script as explained in section IV-B. Then we put those features 

(x1, x2, ….., x8) and the parameter values (β0, β1, β2 , ..., β8) in 

the logistic function(Equation 1) to obtain its classification. 

The function will give us a value according to which the 

category of the script is decided. If the value of F(t) lies 

between 0 and 0.5 the script belongs to category 0 that means 

its benign and if value of F(t) lies between 0.5 and 1, the script 

belongs to category 1 that is its malicious. 

V. RESULTS AND DISCUSSIONS 

To check the accuracy of our tool we tested the 50 

malicious samples that were kept reserved for testing.  
Table 1. Parameter Values 

β0 -1.473 

β1 -0.071 

β2 0.001 

β3 0.003 

β4 0.108 

β5 -0.264 

β6 -2.258 

β7 6.698 

β8 0.114 

 

Table 1 shows the values of parameters (β0, β1, β2 , ….., 

β8) obtained from classifier. In Table 2 (x1, x2, ….., x7) are the 

values of the frequency of are eval, escape, Unescape, string 

instance, element_instance, object_instance, Document.write 

functions respectively and x8 is the presence of Iframe in 

JavaScript. F(t) is the output of the logistic function. 

Classification value tells whether the script is malicious or not. 

If the value of classification is 1 the script is malicious and if 

the value is 0 it is benign.  

Table 2. Show results of five of the test samples.  

Test Sample 1 2 3 4 5 

X1 1 12 1 1 2 

X2 0 13 0 1 0 

X3 1845 8530 1112 711 1367 

X4 3 0 0 0 0 

X5 0 0 0 0 0 

X6 0 0 0 1 1 

X7 0 0 0 3 2 

X8 1 0 0 1 0 

F(t) 0.999 0.995 0.994 0.994 .993 

Classification 1 1 1 1 1 
         Table 2. Test Sample Results 

Overall we tested 75 samples out of which 50 are 

malicious samples that were kept reserved for testing and 25 

are benign samples.  49 samples are detected as malicious and 

1 sample is detected as benign by our tool. This shows that our 

tool has 2% false positive for testing dataset. . One sample that 

was detected as benign by the tool is due to very less strings 

made in that JavaScript i.e x2=703 and only one eval call is 

made i.e x3=1. False positive is calculated as per the equation 

below. 

 

25 benign samples were tested out of which 25 samples 

were detected as benign by the tool. This shows that the tool 

has 0% false negative for testing dataset. False negative (fn) is 

calculated as per the equation below. In equation value of 

benign script classified as malicious is 0 and total benign 

scripts are 25. The value of false negative comes out to be 0. 

 

The run time for the analysis of these test samples was 

observed on the following platform - Intel core 2 duo 8600 

@2.4 ghz with 3GB of ram with Ubuntu 12.10 installed on it. 

The average runtime for an analysis is 1157.5 ms. The 

maximum time for a script was 3109 ms and the minimum 

time recorded was 148 ms. We consider this to be acceptable 

for the first unoptimized implementation. To further refine and 

validate our model, the technique will be validated over a 

large test data which is still being calculated. 
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VI. CONCLUSION AND FUTURE WORK 

In this work we presented a tool for dynamically analyzing 

JavaScript for malware and vulnerabilities. We analyzed the 

actual runtime behavior of JavaScript as it may behave in a 

user’s browser in real time. We characterized the general 

behavior of malicious and benign JavaScript using a classifier 

and then matched a new JavaScript to those categorizations. . 

Results show that the tool is able to detect malicious samples 

with 2% false positives and 0% false negatives. The tool can be 

easily integrated with a proxy server to provide real time 

security to the users as the average overhead to perform an 

analysis is 1157.5 ms only. The tool can be trained with more 

sample dataset to obtain more precise results. 
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