
Bivariate Classification of Malware in JavaScript

using Dynamic Analysis

Yash Gupta

CSE, Student

PEC University of Technology

Chandigarh, India

guptayash3@gmail.com

Dr. Divya Bansal
Associate Professor, CSE

PEC University of Technology

Chandigarh, India

divya@pec.ac.in

Dr. Sanjeev Sofat
HOD, CSE

PEC University of Technology

Chandigarh, India

sanjeevsofat@pec.ac.in

Abstract---JavaScript is used as an attack vector to infect

webpages to gain access to user’s information. We present a tool

that will dynamically analyze and perform bivariate classification

of webpages as malicious or benign. We categorized the general

behavior of JavaScript using datasets of known benign and

malicious JavaScript by using a classifier which is trained on the

basis of difference between function calls made by malicious and

benign JavaScript and identification of Iframe tag in them. A

Script is then matched to those categorizations to classify its

behavior as malicious or benign. Here we have developed a light

weight malicious JavaScript detection approach which can be

used in real time as most of the existing techniques perform

offline analysis.

Keywords---malicious JavaScript, dynamic analysis,

classification, caffeine monkey

I. INTRODUCTION

The increased amount of information exchange over internet

has focused attackers towards web attacks in order to steal

user’s personal and financial information. Attackers are using

different type of web technologies as their attack vectors

which include different type of scripting languages such as

JavaScript, VBScript and many more. In web environment the

scripting attacks through JavaScript have become a common

but severe security threat. The attacker launches these attacks

to leak information, steal passwords or load malware into the

victim’s system through vulnerable JavaScript code. A recent

2013 report from Sophos Labs indicates that 85.2 % of all

website attacks are due to “drive by redirect” attacks using

malicious JavaScript [11].

JavaScript is an object oriented scripting language which

has been widely adopted as a client side scripting language. It

can be embedded in HTML and can interact with Document

Object Model of HTML. It is used to perform various functions

over client side for eg: form validations, access browser

properties, create highly responsive interfaces that improve

user’s experience. These capabilities can endanger the end-user

if the Web page is infected with malicious JavaScript code [9].

JavaScript can be disabled in any browser but 89.2% of the

websites use JavaScript as client side scripting language [16],

so it is not a realistic option to surf web with JavaScript

disabled. Malicious JavaScript code is injected in web pages

using different attack techniques such as cross site scripting.

Moreover, attackers obfuscate this code to avoid detection

mechanisms. Obfuscated code is one which is difficult to

understand by human analysis; it is done to hide the actual

meaning of the code. This infected code is used to spread

worms, install Malware and conduct different types of attacks

such as click jacking, cookie stealing. For Example: An

attacker can easily put a hidden Iframe tag in a webpage and

can redirect user to a malicious web page.

II. RELATED WORK

Today most of the approaches used to counter malicious

websites are infrastructure-based [7, 8]. In these approaches

different websites are crawled and analyzed continuously.

They use different type of static and dynamic analysis

methods and store the analysis results in a database available

for offline analysis. The systems provide browser plugins

which check the user’s requested URL against the database. If

the URL is classified as malicious in the database, the user is

warned against visiting the website. The advantage of this

approach is that it is instantly usable by end-users. These

approaches are flexible as they can use any type of technique

to detect malicious JavaScript but these approaches suffer

from inconsistency issues because a user is warned based on

the classification that is stored in the database. The problem is

that there is no assurance that the website visited by the user

has not been compromised since the analysis is done in an

offline mode due to huge performance burdens.

Ben Feinstein et al. [1] proposed a system, in which they

examined the current state of JavaScript obfuscation and

evasion techniques, approaches for collecting JavaScript

samples from the wild, and developed methods for analyzing

the collected scripts. They developed a suite of tools for

collecting and indexing JavaScript, interpreting the scripts in a

sandboxed environment, and then performing functional

analysis for manual and automated detection mechanisms.

They developed a tool Caffeine Monkey [1] that sandboxes

the JavaScript. It is an open source modification of spider

monkey [12]. They classify JavaScript on the basis of

difference between numbers of function calls made by benign

and malicious JavaScript. The major drawback is that the

mechanism is not automated and hence analysis of malware

infected JavaScript has to be done in an offline mode.

International Workshop on Cloud Computing and Information Security (CCIS 2013)

© 2013. The authors - Published by Atlantis Press 178

Moreover the Caffeine Monkey Engine is unable to interpret

JavaScript in which DOM (Document object Model)

functionality is used. DOM is a programming API for HTML

documents [14]. As most of the websites today use DOM

along with JavaScript so the existing tool can’t be used to

detect malwares efficiently.

M. Cova et al [2] presents a tool called JSAND (JavaScript

Anomaly-based Analysis and Detection) The tool is publically

available where a user can submit URLs and JavaScript files

to check whether they exhibit some malicious behavior or not.

It is an instrumented browser emulator that executes the

JavaScript code to check its runtime behavior as it will

actually behave in a user browser. The system uses a number

of features which capture intrinsic characteristics of attacks

along with machine learning techniques for anomaly detection

which is detecting potentially malicious behavior.

Additionally, the system is able to analyze obfuscated code

and generates attack signatures for signature-based detection

systems. The major drawback is that the technique is not

automated as the user has to manually enter each URL to

check whether it is benign or malicious.

Wang et al. [3] presents a system utilizing a honeypot within a

virtual machine (VM). Within the VM, the tool creates an

instance of the Microsoft Internet Explorer, navigates to a

specific URL, and waits for few minutes. Changes to the

VM’s file system and registry are flagged. If a change to the

file system outside of the temporary directory of the browser is

detected, the site is classified as malicious. The system then

shuts down the potentially infected VM and starts a clean one

to analyze the next URL. To determine if an exploit just works

against a specific combination of versions of Microsoft

Internet Explorer and the underlying operating system (or if it

even is a zero-day exploit), a pipeline of such virtual machines

is used, each covering a different patch level. The problem in

this approach is that it can be used only for Internet Explorer.

Another problem of this approach is that it does not scale well.

The analysis effort can be nicely parallelized on redundant

hardware but analyzing millions of websites per day can be

rather tedious and costly job. Moreover the frequency of

analysis of a website is also important because if a website

later gets infected; it should be crawled and analyzed as

quickly as possible. Cox et al. [4] proposed a Virtual Machine

based technique that runs on client side, thus partly leveraging

the problem of scalability. This introduced client-side

approaches to counter malicious websites. But the problem is

that the users now have to invest in additional hardware to run

a virtual machine and additional detection software.

Several static techniques are also used for identifying

malicious JavaScript. Saurabh Jain et al. [6] proposed a

signature and regular expression based matching technique to

identify malicious JavaScript code. Mohammad Fraiwan et al.

[5] proposed a technique based on a classification model. They

analyzed the behavior and properties of JavaScript code to

point out its key features using static analysis techniques. Then

classifiers were trained on malicious and benign data. The main

problem of these techniques is that they do not check the actual

behavior of JavaScript. Moreover, they do not consider the

obfuscated JavaScript as it is difficult to perform static analysis

techniques on obfuscated JavaScript code which is otherwise a

bigger threat and a security challenge.

III. DETECTION TECHNIQUE FOR DYNAMIC ANALYSIS OF

JAVASCRIPT

For developing a detection technique for Dynamic analysis,

we have to run JavaScript in a sandboxed environment. We

extracted several features of known benign and malicious

JavaScript after its execution in sandboxed environment and

then compare the features of a new script to those of malicious

and benign. To automate the detection mechanism we have

used a classifier. The base of our dynamic analysis is the

caffeine monkey engine [1]. Caffeine Monkey engine

interprets the JavaScript and creates a log of function calls

made by that JavaScript along with the deobfuscated

JavaScript. As discussed earlier in section II caffeine monkey

engine cannot interpret JavaScript containing DOM. we

customized the Caffeine Monkey engine and to do so, we have

defined the document, window, location, navigator objects of

DOM and its properties in it. The log generated by the

customized Caffeine Monkey engine is then used to obtain

features for classification of a script as malicious or benign.

A. Features Used For Classification

We used 8 features to compare general behavior of malicious

and benign JavaScript and then classify a script as malicious

or benign. Out of eight, seven are based on the frequency of

the functions called by the JavaScript code and eighth is based

on detecting the presence of Iframe tag inside the JavaScript.

These features are obtained from the log created by our

customized Caffeine Monkey engine.

1) Function Calls

Combining the existing approaches which could count 6

function calls, we have counted one additional function

‘Unescape’. The complete list of functions counted is

described below:

 Escape: The escape function encodes a string and makes

it portable, so it can be transmitted across any network to

any computer that supports ASCII characters.[15]

 Eval: The Eval function executes or evaluates and

argument. If the argument is JavaScript code the function

executes it otherwise it evaluates it.[15]

 String Instantiation: Create a new string object. Whenever

a New String is created we count it.

 Element Instantiation: Create a new element object.

Whenever a New Element Object is created we count it.

 Object Instantiation: Create a new object instance.

Whenever a new object is created excluding string and

element objects we count it.

 Document. Write: A method that writes HTML

expressions or JavaScript code to a document.

179

 Unescape: The Unescape function decodes an encoded

string.

2) Iframe Tag

In our approach we have been able to detect malware injected

using Iframe tag which has become a serious attack method

and usually goes undetected by present detection system.

The <Iframe> tag specifies an inline frame which is used to

embed another document within the current HTML document

and is thus used quite often used by attackers to inject

malicious content on a website [6]. Iframe tag can also be

injected via JavaScript in a webpage using its document.write

method as shown in figure 1. By using an Iframe an attacker

can redirect a user from a benign website to a malicious

webpage. Moreover an attacker can hide an Iframe, so that the

users don’t even know that they became victim of an attack.

There are several ways of hiding Iframe as it has attributes

like height, width, style so this tag can easily be used for

creating severe attacks as a common user visiting a website

with hidden frame has no idea that he or she is a victim of

exploit. Ways of hiding an Iframe tag: setting its height=1 and

width=1, style=”visibility: hidden” or style=”opacity: 0”. If an

Iframe tag embedded in JavaScript has such attributes then it

is possible that it is a malicious JavaScript. So we considered

an Iframe tag embedded in JavaScript as one of the features to

classify a Script. Figure 1 presents an example of how an

Iframe tag can be used inside JavaScript and redirect a user to

some malicious webpage.

Figure 1. Example of Iframe tag embedded in JavaScript

.

IV. CLASSIFICATION MODEL

Figure 2 shows the steps involved in classification of a

JavaScript as malicious or benign.

Figure 1. Classification Model

A. Sample Data Collection

To train a classifier we need both benign and malicious

JavaScript samples of websites. For benign samples we

extracted JavaScript from front pages of top websites rated on

Alexa.com [11]. We obtained 160 malicious samples. Out of

those 160 samples 10 were identical so we discarded them and

trained the classifier using 100 samples. 50 samples were kept

reserved for testing purpose.

B. Feature Calculation

For calculating our features we submit every JavaScript

sample to the customized Caffeine Monkey engine that

generates a log of all the function calls made by JavaScript

along with the deobfuscated JavaScript. The log is then parsed

using a python script to calculate the frequency of the seven

function calls made by the JavaScript and to check whether

JavaScript contains Iframe tag in it as explained in section III-

A. The values of the frequency of each of the seven function

calls and the Iframe tag are stored in a database. The values

obtained act as features or independent variables for training

of our classifier. Classifier training is discussed in next step.

After calculating and storing the values of features in the

database we exported the database to an Excel file so that it

can be used for classifier training.

C. Classifier Training

As our current model does classification as binary that is

either malicious (1) or benign (0) we used binary logistic

regression as our classifier. IBM’s SPSS software [17] is used

which provides us binary logistic regression. Binary logistic

regression is a type of regression analysis which is used for

predicting the outcome of a categorical dependent variable (a

dependent variable can take only two possible values that is 1

or 0) based on one or more independent variables [13]. It uses

a logistic function shown in equation 1, which tells us to

which class a new observation will belong.

 Where

Equation 1. Logistic Function [13]

In Figure x1, x2,...,xk are the independent variables or

features and t is the measure of the total contribution of x

variables. , are the parameters calculated by

logistic regression which will be used to classify a new

observation.

The value of F(t) lies between 0 and 1.Default cutoff for

binary logistic regression is 0.5 means if 0<F(t)<0.5 then the

observation belongs to category 0 and if 0.5<F(t)<1 then the

observation belongs to category 1. In our research

classification of JavaScript as malicious (1) or benign (0) is

dependent variable and the 8 features we are calculating are

180

the independent variables. Here the value of k=8. The eight

features X1, X2, X3, X4, X5, X6, X7, X8 are eval, escape,

Unescape, string instance, element_instance, object_instance,

Document.write, Iframe respectively.

We submit a file to SPSS containing all the eight features for

all the samples along with their classification as benign (0) or

malicious (1). Then we performed binary logistic regression

over it. After training the logistic regression gives us the

values of β0, β1, β2 , ..., β8 that will be used to classify a new

script as malicious or benign.

D. Classification of JavaScript

The Figure 3 shows the steps in classification of a new

JavaScript.

Figure 2. Classification of JavaScript

To classify a new script first we obtain features of that

script as explained in section IV-B. Then we put those features

(x1, x2, ….., x8) and the parameter values (β0, β1, β2 , ..., β8) in

the logistic function(Equation 1) to obtain its classification.

The function will give us a value according to which the

category of the script is decided. If the value of F(t) lies

between 0 and 0.5 the script belongs to category 0 that means

its benign and if value of F(t) lies between 0.5 and 1, the script

belongs to category 1 that is its malicious.

V. RESULTS AND DISCUSSIONS

To check the accuracy of our tool we tested the 50

malicious samples that were kept reserved for testing.
Table 1. Parameter Values

β0 -1.473

β1 -0.071

β2 0.001

β3 0.003

β4 0.108

β5 -0.264

β6 -2.258

β7 6.698

β8 0.114

Table 1 shows the values of parameters (β0, β1, β2 , …..,

β8) obtained from classifier. In Table 2 (x1, x2, ….., x7) are the

values of the frequency of are eval, escape, Unescape, string

instance, element_instance, object_instance, Document.write

functions respectively and x8 is the presence of Iframe in

JavaScript. F(t) is the output of the logistic function.

Classification value tells whether the script is malicious or not.

If the value of classification is 1 the script is malicious and if

the value is 0 it is benign.

Table 2. Show results of five of the test samples.

Test Sample 1 2 3 4 5

X1 1 12 1 1 2

X2 0 13 0 1 0

X3 1845 8530 1112 711 1367

X4 3 0 0 0 0

X5 0 0 0 0 0

X6 0 0 0 1 1

X7 0 0 0 3 2

X8 1 0 0 1 0

F(t) 0.999 0.995 0.994 0.994 .993

Classification 1 1 1 1 1
 Table 2. Test Sample Results

Overall we tested 75 samples out of which 50 are

malicious samples that were kept reserved for testing and 25

are benign samples. 49 samples are detected as malicious and

1 sample is detected as benign by our tool. This shows that our

tool has 2% false positive for testing dataset. . One sample that

was detected as benign by the tool is due to very less strings

made in that JavaScript i.e x2=703 and only one eval call is

made i.e x3=1. False positive is calculated as per the equation

below.

25 benign samples were tested out of which 25 samples

were detected as benign by the tool. This shows that the tool

has 0% false negative for testing dataset. False negative (fn) is

calculated as per the equation below. In equation value of

benign script classified as malicious is 0 and total benign

scripts are 25. The value of false negative comes out to be 0.

The run time for the analysis of these test samples was

observed on the following platform - Intel core 2 duo 8600

@2.4 ghz with 3GB of ram with Ubuntu 12.10 installed on it.

The average runtime for an analysis is 1157.5 ms. The

maximum time for a script was 3109 ms and the minimum

time recorded was 148 ms. We consider this to be acceptable

for the first unoptimized implementation. To further refine and

validate our model, the technique will be validated over a

large test data which is still being calculated.

181

VI. CONCLUSION AND FUTURE WORK

In this work we presented a tool for dynamically analyzing

JavaScript for malware and vulnerabilities. We analyzed the

actual runtime behavior of JavaScript as it may behave in a

user’s browser in real time. We characterized the general

behavior of malicious and benign JavaScript using a classifier

and then matched a new JavaScript to those categorizations. .

Results show that the tool is able to detect malicious samples

with 2% false positives and 0% false negatives. The tool can be

easily integrated with a proxy server to provide real time

security to the users as the average overhead to perform an

analysis is 1157.5 ms only. The tool can be trained with more

sample dataset to obtain more precise results.

ACKNOWLEDGMENT

This work is done in Cyber Security Research Center (CSRC)

located at PEC University of Technology. The authors would

like to that Government of India, Ministry of Communications

and Information Technology, Department of Information

Technology, New Delhi, for funding the Project

“Development of Cloud Based Framework for Delivering

Security as a Service”, under which this research work has

been done. We would also like to thank Mr. Pankaj Tanwar

for his entire help rendered in understanding the source codes

and customization during development phase.

REFERENCES

[1] Ben Feinstein, Daniel Peck, “Caffeine Monkey: Automated

Collection, Detection and Analysis of Malicious JavaScript,”

Black Hat USA, 2007.

[2] M. Cova, C. Kruegel, and G. Vigna,“ Detection and Analysis of

Drive-by-Download Attacks and Malicious JavaScript Code,”

World Wide Web Conference (WWW), April 2010.

[3] Yi-Min Wang and Doug Beck and Xuxian Jiang and

RoussiRoussev, “Automated Web Patrol with Strider

HoneyMonkeys: Finding Web Sites that Exploit Browser

Vulnerabilities,” Network and Distributed System Security

Symposium (NDSS), 2006.

[4] R.S. Cox,S.D. Gribble,H.M.Levy and J.G. Hansen,”A Safety-

Oriented Platform for Web Applications,” IEEE Symposium on

Security and Privacy,2006

[5] Mohammad Fraiwan, Rami Al-Salman, Natheer Khasawneh and

Stefan Conrad “Analysis and Identification of Malicious

JavaScript Code,” Information Security Journal: A Global

Perspective, 2012.

[6] Saurabh Jain, Deepak Sing Tomar, Divya Rishi Sahu,”Detection

of JavaScript Vulnerability At Client Agent,” International

Journal of Scientific and Technology Research,2012

[7] Google safe browsing v2 API protocol guide-

https://developers.google.com/safe-

browsing/developers_guide_v2.

[8] McAfee. Site Advisor.http://www.siteadvisor.com.

[9] JavaScript attacks. http://en.wikipedia.org/wiki/Cross-

site_scripting.

[10] Alexa. Global top sites. http://www.alexa.com/topsites.

[11] Sophos Labs security threat report-2013.

http://www.sophos.com.

[12] Spider monkey.

https://developer.mozilla.org/en/docs/SpiderMonkey.

[13] Logistic Regression.

http://en.wikipedia.org/wiki/Logistic_regression.

[14] Document Object Model. http://www.w3.org/TR/WD-

DOM/introduction.html.

[15] JavaScript. http://www.w3schools.com/jsref/.

[16] JavaScript usage. http://w3techs.com/technologies/details/cp-

javascript/all/all.

[17] IBM Spss Software. http://www-

01.ibm.com/software/analytics/spss/.

182

