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Abstract---In data intensive applications of Cloud 

Computing such as XML parsing, large graph traversing 

and so on, there are a lot of operations to access irregular 

data. These data need be timely prefetched into the shared 

cache in CMPs by helper thread. However, a bad 

prefetching strategy of helper thread will cause the 

multi-core shared cache pollution and degradation of 

performance. For analyzing the stand or fall of 

prefetching strategy of helper thread, this paper proposes 

a performance model for helper thread prefetching, then 

aiming at relevant to standard testing programs in Olden 

and CPU2006, the experimental results show that our 

model is effective for identifying the distribution of timely, 

late, bad, ugly of helper thread LLC requests. We could 

find the stand or fall of prefetching strategy of helper 

thread by observing the foremost factors in the 

distribution. 

Keywords--multi-core shared cache; Helper thread;    

Performance model 

I. INTRODUCTION 

Data intensive workloads of Cloud computing such 
as XML parsing and irregular graph traversing exhibit 
irregular memory access patterns which makes 
traditional prefetching techniques useless. For 
improving their performance, the proliferation of shared 
cache multiprocessors (CMPs) [4] enables helper 
threads [5] running on the idle cores of CMPs 
speculatively issue last-level cache (LLC) prefetches [ 1] 
to the predicted memory addresses, in order to hide the 
latencies of main thread references. Effective helper 
thread prefetching (HT) on CMPs demands that the 
helper thread should issue accurate and timely LLC 
requests early enough before the main thread references 
them. Unfortunately, the real helper thread prefetching 
strategies are not always effective, inaccurate and/or 
untimely LLC requests coming from the helper thread 
could not contribute to the main thread performance but 
rather stress and pollute the LLC. This phenomenon is 
witnessed by the previous studies on cache management 
for hardware prefetching [7].  

The basic workflow of helper thread prefetching on 
shared-cache CMPs can refer to [3, 5]. In general, there 
are three helper thread prefetching parameters to control 
the helper thread’s aggressiveness and effectiveness: 
Lookahead, Stride and Synchronization Period. 
However, the traditional helper thread prefetching 
approach selects empirically the prefetching parameter 
values. It is unable to accommodate the unpredictable 
nature of the LLC runtime behavior in the presence of 
helper thread requests. And studying the interplay of 
helper thread parameters and its impact on LLC 
activities are impossible on current real machines 

because of measurement costs and limited capabilities 
of hardware performance monitoring counters. In this 
paper, we tailor the open source CMP architectural 
simulator Archimulator to meet the needs of simulation 
and characterization of helper thread prefetching on 
CMPs, and use cycle-accurate architectural simulation 
to elaborate on the LLC interference caused by helper 
thread prefetching and its impact on the overall 
performance. Experimental results of data intensive, 
pointer traversal benchmarks from Olden [9] and 
CPU2006 [6] show that the appropriate value-selection 
of helper thread parameters such as lookahead, stride 
and synchronization period, plays a key role in 
performance improving of helper thread prefetching.  

The main contributions of this paper can be 
summarized as follows: We propose a helper thread 
performance model based on reuse distance, and we 
could find how many helper thread LLC requests are 
useless or useful by this method. The induced LLC 
interference caused by the helper thread LLC 
prefetching requests have not been studied before. Our 
model is different from the metrics of prefetch accuracy, 
coverage and lateness [10], and is mostly similar to the 
work described in [8], which presented a taxonomy of 
hardware prefetches from the viewpoint of hardware 
prefetch. Good, bad and ugly requests are identified 
based on cache replacement activities involved by 
hardware prefetches. A hardware structure called the 
Evict Table (ET) was proposed to attach to the LLC, in 
order to gauge the amount of hardware prefetch induced 
shared cache pollution. The HTRVC structure proposed 
in our work is used for tracking software based helper 
thread L2 request victims instead of hardware prefetch 
victims.We show also how to tune the helper thread 
parameters for improving effectiveness of helper thread 
prefetching.  

II. PERFORMANCE MODELING OF HELPER 

THREAD PREFETCHING 

The simulated baseline CMP machine is consisted 
of two 2-way out-of-order SMT cores. Each core has its 
own private L1 caches, which are writeback and 
maintain inclusion with a 1MB 8-way shared L2 cache. 
The system implements sequential consistency using 
directory based MESI coherence on a basic 
point-to-point on-chip network. Both L1 and L2 caches 
use the LRU replacement policy. We developed the 
open source Archimulator [2] CMP architectural 
simulation environment for the experiments mentioned 
in this work. Archimulator is an object-oriented 
execution-driven application-only architectural 
simulation environment written entirely in Java, and 
running on Unix/Linux based operating systems. It can 
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simulate MIPS II executables in three modes: functional 
simulation, cycle-accurate simulation and two-phase 
fast forward and measurement simulation. It supports 
simulating Pthreads based multi-threaded workloads. In 
a typical Pthreads based helper thread program, there 
are three threads while running: main thread, helper 
thread and Pthreads manager thread. The Pthreads 
manager thread takes the role of spawning, suspending 
and resuming the helper thread by passing signals to the 
helper thread. The three software contexts are mapped 
to the hardware threads as follows: C0T0 →main thread, 
C0T1 →Pthreads manager thread, C1T0 →helper 
thread (C = core, T = thread).  

A. Basic Metrics for Helper Thread Prefetching  

•Useful vs. Useless Helper Thread LLC Requests. A 
helper thread LLC request can be either useful or 
useless based on the re-references of its requested data. 
Specifically, a helper thread request is useful if a 
subsequent main thread request reuses its data before 
the LLC displaces its data. Otherwise, a helper thread 
request is useless if the LLC displaces its data before a 
subsequent main thread request reuses its data.  

•Helper Thread LLC Request Accuracy. It is of vital 
importance that the helper thread can accurately predict 
and prefetch the data that the subsequent main thread 
requests will use. For benchmarks with high helper 
thread LLC request accuracy, the overall performance 
increases as the aggressiveness of the helper thread 
prefetching scheme increases. Otherwise, for 
benchmarks exhibiting low helper thread LLC request 
accuracy, the overall performance degrades due to 
shared cache pollution as the aggressiveness of helper 
thread prefetching scheme is increased. The helper 
thread request accuracy is defined as # Useful HT 
Requests / # Total HT Requests, where the # Useful HT 
Requests is the number of the LLC lines brought by the 
helper thread requests that are re-referenced by 
subsequent main thread requests.  

•Helper Thread LLC Request Coverage. 
Determining how many main thread LLC misses can be 
reduced by the helper thread, is insightful in fine-tuning 
the helper thread prefetching parameters. Specifically, 
Helper thread LLC request coverage is such a measure 
of the fraction of all main thread LLC misses in the 
baseline version (where helper thread is switched off) 
that can be converted into hits in the helper thread 
version. The helper thread achieves this reduction of 
main thread LLC misses by issuing requests early 
enough to convert subsequent main thread LLC misses 
into hits. It is defined as # Useful HT Requests / # MT 
Misses w/o HT.  

•Helper Thread LLC Request Lateness. A helper 
thread LLC request is late if it fails to bring the data 
from the main memory by the time a main thread LLC 
request references the data. Therefore, even though the 
helper thread LLC request is accurate, it may only 
partially hide the latency incurred by an LLC miss in 
the main thread. The helper thread LLC request lateness 
can thus be defined as # Late HT Requests / # Total HT 
Requests.  

•Helper Thread LLC Request Pollution. A helper 
thread LLC request is polluting if it evicts prematurely 
the useful data that will be referenced by a main thread 

LLC request. The helper thread LLC request pollution 
can thus be defined as # Polluting HT Requests / # Total 
HT Requests.  

 

Figure 1.Timeline for the Breakdown of Helper Thread LLC 

Requests 

B. Performance Modeling of Helper Thread Prefetching 

We can construct a fine-grain breakdown of helper 
thread LLC requests, to express helper thread prefetch 
usefulness, lateness, pollution and redundancy. In 
Figure 1(a), there are four cases based on the relative 
positions of the helper thread request and the 
subsequent main thread request:  

•A late helper thread request, happens when the 
main thread request to the data element H arrives after 
the helper thread request to H is initiated (t0) but before 
the data element H is inserted into the LLC (t1). A late 
helper thread request is similar to the following timely 
helper thread request but it only partially hides the LLC 
miss latency in the main thread request.  

•A timely helper thread request, happens when the 
main thread request to the data element H arrives after 
the helper thread request’s data element H is inserted 
into the LLC (t1) but before the data element H is 
evicted from the LLC (t2). This case is the result of the 
optimal decision made at the time the helper thread 
request is initiated, since it evicts the data element (V) 
that has larger reuse distance than its own (H). This case 
has the most positive impact on the main thread 
performance since it reduces one main thread miss.  

•A bad helper thread request, happens when the 
main thread request to the victim data element V arrives 
after the helper thread’s data element H is inserted into 
the LLC (t1) but before the data element H is evicted 
from the LLC (t2). This case is the result of the 
non-optimal decision made at the time the helper thread 
is initiated, since it evicts the data element (V) that has 
smaller reuse distance than its own (H). In other words, 
it displaces an LLC line that will later be needed by the 
main thread. This case should be prevented as much as 
possible, which is harmful for the main thread 
performance.  

•An ugly helper thread request, happens when the 
main thread request to the data element H arrives after 
the helper thread request’s data element H is evicted 
from the LLC (t2). This case is the result of the ugly 
decision made at the time when the helper thread 
request is initiated, since both its data element (H) and 
the victim data element (V) have larger reuse distances 
than the subsequent main thread data element (M). This 
case has little performance impact on the main thread 
performance other than increases the on-chip 
interconnect bandwidth consumption, since the helper 
thread’s data element is not reused by the main thread 
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before evicted and it does not evict any data element 
that will be used by the main thread.  

If the helper thread request is too late that it even 
can not catch up with the main thread, then when it 
arrives at the LLC, it may find the data is already 
present in either LLC or LLC MSHRs. Therefore, as 
depicted in Figure 1(b), there are two more cases based 
on the relative positions of the main thread request and 
the late helper thread request:  

•A redundant_mshr helper thread request, 
happens when the helper thread rquest arrives after the 
main thread request is initiated (t0) but before the data 
element is inserted into the LLC (t1).  

•A redundant_cache helper thread request, 
happens when the helper thread request arrives after the 
main thread request’s data element is inserted into the 
LLC (t1) but before the data element is evicted from the 
LLC (t2). These two cases contribute nothing but the 
waste of the on-chip interconnect bandwidth to the 
overall performance.  

Hence we have the following theorem1. 
Theorem 1: For some benchmark with helper 

threads, after the percents of late, timely, bad, ugly, 
Redundant_MSHR and  Redundant_Cache to helper 
thread LLC prefetching requests are computed 
respectively, and their distribution has been gotten. 

a-1. if the sum of late-percent and timely-percent 
dominates the distribution, then the performance 
improvement is true; 

a-2. if the percent-sum of bad, ugly, 
Redundant_MSHR and  Redundant_Cache dominates 
the distribution, then the performance improvement is 
false; 

a-3. if the sum of late-percent and timely-percent is 
nearly equal to the percent-sum of bad, ugly, 
Redundant_MSHR and  Redundant_Cache, then the 
performance improvement is uncertain.  

III. IMPLEMENTATION 

A. Hardware Support 

A few hardware components are added in the 
aforementioned Archimulator simulator to implement 
the prefetch breakdown:  

•LLC Request and Replacement Event Tracking.To 
monitor the request and replacement activities in the 
LLC, we need to consider the event when the LLC 
receives a request coming from the upper level private 
cache, whether it is a hit or a miss.  

•Helper Thread LLC Request State Tracking. In 
order to track the helper thread request states in the 
LLC, we need to add one field named threadId to each 
LLC line to indicate whether the line is brought in by 
the main thread or the helper thread or otherwise 
invalid.  

•Helper Thread LLC Request Victim State 
Tracking.In order to track victims replaced by helper 
thread requests, we need to add an LRU cache named 
Helper Thread Request Victim Cache (HTRVC) to 
maintain the LLC lines that are evicted by helper thread 
requests. The HTRVC has the same structure of the 
LLC, and there is a direct mapping between the LLC 
lines and the HTRVC lines. One field called 
HTRequestTag is thus added to HTRVC to enable 

reverse lookup in the HTRVC by the helper thread 
request tag in LLC. The HTRVC has the sole purpose of 
profiling, thus it has no impact on the program 
performance.  

•Detecting Late Helper Thread LLC Requests.In 
order to measure late helper thread requests, we need to 
identify the event when a main thread request hits to an 
LLC line which is being brought by an in-flight helper 
thread request coming from the upper level cache. This 
can be accomplished by monitoring the LLC Miss 
Status Holding Registers (MSHRs).  

B. Tracking and Classifying Helper Thread Prefetches  

Changes to the contents of the LLC and HTRVC 
take place when filling an LLC line and servicing an 
incoming LLC request. Therefore, corresponding 
appropriate actions should be taken in the LLC and the 
HTRVC to track the helper thread LLC requests and 
victims used in the breakdown of helper thread requests.  

•On Inserting an LLC Line When filling an LLC 
line, we should consider four non-trivial cases as listed 
below: Case 1. A helper thread request fills an 
INVALID line. In this case, no eviction is needed, but a 
new NULL entry should be inserted in the HTRVC to 
maintain the invariant since the data brought by a new 
helper thread request arrives in the LLC. Case 2. A 
helper thread request evicts an LLC line which is 
previously brought in by a main thread request. In this 
case, a new DATA entry should be inserted in the 
HTRVC to maintain the invariant. Case 3. A helper 
thread request evicts an LLC line which is previously 
brought by a helper thread request. In this case, the 
stored HT request tag should be updated to the 
incoming helper thread request tag in the corresponding 
victim entry in the HTRVC. Case 4. A main thread 
request evicts an LLC line which is previously brought 
by a helper thread request. In this case, since the data 
brought by a helper thread request is removed, its 
corresponding victim entry found in the HTRVC should 
be invalidated to maintain the invariant.  
   •On Servicing an Incoming LLC Request When 
servicing an incoming LLC request, we should consider 
three nontrivial cases as listed below. The involved LLC 
line’s inflightThreadId is recorded when the incoming 
LLC request from one thread hits the LLC MSHRs, and 
its data is being brought in by an earlier LLC request 
from another thread. Case 1. If the incoming LLC 
request is from the helper thread, we need to first check 
the contents of LLC and LLC MSHRs in order to 
determine if the helper thread request is of either a 
redundant_mshr or a redundant_cache type. Case2.A 
bad helper thread request occurs when an incoming 
main thread LLC request hits a victim entry found in 
the HTRVC, but misses in the LLC. Case 3. A good 
helper thread request, either late or timely, depending 
on whether the value of inflightThreadId is valid or not 
in the involved LLC line, occurs when an incoming 
main thread LLC request hits the data brought by a 
previous helper thread request in the LLC but misses in 
the HTRVC.  

• On an LLC Line is Invalidated When an LLC 
line is invalidated, the involved LLC line’s helper 
thread request state is cleared. If the LLC line is brought 
by the helper thread, then the corresponding HTRVC 
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entry is invalidated as well.  

IV. EXPERIMENTAL RESULTS 

We perform the experiments using selected 
memory-intensive, pointer traversal benchmarks mst 
and em3d from the Olden pointer traversing benchmark 
suite and 429.mcf from CPU2006. All applications are 
cross-compiled to MIPS II executables using gcc flags 
“-O3”. Default values of the helper thread prefetching 
lookahead and stride parameters are chosen as 20 and 
10 respectively, if not specified explicitly. To reduce the 
simulation time, we first fast forward to the 
pthread_spawn(..) function call for spawning the helper 
thread in the program code, and then run in detail for 
200 million instructions on the main thread. Although 
there is no pthread_spawn(..) call in the baseline 
program code, we can insert the same pseudo-calls in 
the corresponding code location as compared to the 
helper thread prefetching version.  

A.Performance Sensitivity to L2 Size and Associativity  

Figure2 shows the speedup impact of L2 size and 
associativity on performance of mst,429.mcf and em3d.  
The average speedup of mst, 429.mcf and em3d is about 
1.74, 1.04 and 0.98 respectively. For mst of high 
performance, when the L2 size is greater than 128KB, 
the execution time remain nearly constant. This is 
because the average percent of late, timely, bad, ugly, 

Redundant_MSHR and Redundant_Cache to helper 
thread LLC prefetching requests is about 78%, 20%, 0, 
0.3%, 0.2% and 1.5% respectively, according to 
theorem1(a-1), the usefulness of late and timely is 
almost 98%. For 429.mcf, there is little performance 
improvement too, and when the L2 size is greater than 
128 KB, the execution time reduces little, and the 
execution times remain nearly constant when the L2 
associativity is greater than 8 ways. However, for em3d, 
there is not any speedup. This is because the average 
percent of late, timely, bad, ugly, Redundant_MSHR 
and Redundant_Cache to helper thread LLC prefetching 
requests is about 0, 1.6%, 0, 97%, 0.002% and 1.2% 
respectively. According to theorem1(a-2), only the ugly 
is almost 97%, its performance improvement is false. 

B.Performance Sensitivity to Helper Thread Parameters  

Table1 shows the impact of prefetching parameters 
such as lookahead and stride on performance and helper 
thread prefetch breakdown, when L2 Size=1MB, L2 
Assoc=8, the em3d_baseline execution time is 
963314606. Compared em3d (lookahead=20,stride=10) 
with Figure 2, the minimum reduction of execution time 
is achieved when the stride is 10 and there is no 
lookahead. The speedup is changed into 1.23. From the 
view of breakdown of helper thread L2 requests of 
em3d_ht, Timely helper thread requests were improved 
distinctly. 

From the above discussions of the experimental 
results on the data intensive, pointer traversal 
benchmarks from Olden and CPU2006, we can 
conclude that our performance model of helper thread is 
effective. Meanwhile the relationship between the 
lookahead-value and the stride-value reflects the 
dynamic balance of memory accesses skipped in the 
prelude and done in stable phase in the helper thread 

prefetching scheme. For enlarging the cases of timely 
and late, and reducing the cases of ugly and bad, we 
must select the optimal values of helper thread 
parameters such as lookahead and stride by analyzing 
the memory access patterns of target workload. 

 

Figure 2. Performance Impact of L2 Size and Associativity 

TABLE1. PERFORMANCE IMPACT FOR PARAMETER 

VALUES OF em3d_ht  

Stride  
Look-
ahead  

Num_ 
Cycles  

Late  Timely  Bad  Ugly  

Redu
ndan
t_M
SHR  

Redundant_ 
Cache  

.10  0  782029586  480  1232504  0  1300084  74  26526 

10  10  973337567  73  49317  0  3046216  78  36726 

20  0  793020908  688  1165799  0  1413427  69  24536  

20  10  973439744  77  48983  0  3060318  84  32904  

40  0  818276057  813  1010254  0  1648486  81  24643  

40  10  973462738  80  48724  0  3061356  80  32359  
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