
Performance Modeling for Helper Thread on Shared Cache CMPs

Min Cai, Zhimin Gu*, Yinxia Fu

School of Computer Science and Technology

Beijing Institute of Technology

Beijing, PR China

* Corresponding author Email : zmgu@x263.net

Abstract---In data intensive applications of Cloud

Computing such as XML parsing, large graph traversing

and so on, there are a lot of operations to access irregular

data. These data need be timely prefetched into the shared

cache in CMPs by helper thread. However, a bad

prefetching strategy of helper thread will cause the

multi-core shared cache pollution and degradation of

performance. For analyzing the stand or fall of

prefetching strategy of helper thread, this paper proposes

a performance model for helper thread prefetching, then

aiming at relevant to standard testing programs in Olden

and CPU2006, the experimental results show that our

model is effective for identifying the distribution of timely,

late, bad, ugly of helper thread LLC requests. We could

find the stand or fall of prefetching strategy of helper

thread by observing the foremost factors in the

distribution.

Keywords--multi-core shared cache; Helper thread;

Performance model

I. INTRODUCTION

Data intensive workloads of Cloud computing such
as XML parsing and irregular graph traversing exhibit
irregular memory access patterns which makes
traditional prefetching techniques useless. For
improving their performance, the proliferation of shared
cache multiprocessors (CMPs) [4] enables helper
threads [5] running on the idle cores of CMPs
speculatively issue last-level cache (LLC) prefetches [1]
to the predicted memory addresses, in order to hide the
latencies of main thread references. Effective helper
thread prefetching (HT) on CMPs demands that the
helper thread should issue accurate and timely LLC
requests early enough before the main thread references
them. Unfortunately, the real helper thread prefetching
strategies are not always effective, inaccurate and/or
untimely LLC requests coming from the helper thread
could not contribute to the main thread performance but
rather stress and pollute the LLC. This phenomenon is
witnessed by the previous studies on cache management
for hardware prefetching [7].

The basic workflow of helper thread prefetching on
shared-cache CMPs can refer to [3, 5]. In general, there
are three helper thread prefetching parameters to control
the helper thread’s aggressiveness and effectiveness:
Lookahead, Stride and Synchronization Period.
However, the traditional helper thread prefetching
approach selects empirically the prefetching parameter
values. It is unable to accommodate the unpredictable
nature of the LLC runtime behavior in the presence of
helper thread requests. And studying the interplay of
helper thread parameters and its impact on LLC
activities are impossible on current real machines

because of measurement costs and limited capabilities
of hardware performance monitoring counters. In this
paper, we tailor the open source CMP architectural
simulator Archimulator to meet the needs of simulation
and characterization of helper thread prefetching on
CMPs, and use cycle-accurate architectural simulation
to elaborate on the LLC interference caused by helper
thread prefetching and its impact on the overall
performance. Experimental results of data intensive,
pointer traversal benchmarks from Olden [9] and
CPU2006 [6] show that the appropriate value-selection
of helper thread parameters such as lookahead, stride
and synchronization period, plays a key role in
performance improving of helper thread prefetching.

The main contributions of this paper can be
summarized as follows: We propose a helper thread
performance model based on reuse distance, and we
could find how many helper thread LLC requests are
useless or useful by this method. The induced LLC
interference caused by the helper thread LLC
prefetching requests have not been studied before. Our
model is different from the metrics of prefetch accuracy,
coverage and lateness [10], and is mostly similar to the
work described in [8], which presented a taxonomy of
hardware prefetches from the viewpoint of hardware
prefetch. Good, bad and ugly requests are identified
based on cache replacement activities involved by
hardware prefetches. A hardware structure called the
Evict Table (ET) was proposed to attach to the LLC, in
order to gauge the amount of hardware prefetch induced
shared cache pollution. The HTRVC structure proposed
in our work is used for tracking software based helper
thread L2 request victims instead of hardware prefetch
victims.We show also how to tune the helper thread
parameters for improving effectiveness of helper thread
prefetching.

II. PERFORMANCE MODELING OF HELPER

THREAD PREFETCHING

The simulated baseline CMP machine is consisted
of two 2-way out-of-order SMT cores. Each core has its
own private L1 caches, which are writeback and
maintain inclusion with a 1MB 8-way shared L2 cache.
The system implements sequential consistency using
directory based MESI coherence on a basic
point-to-point on-chip network. Both L1 and L2 caches
use the LRU replacement policy. We developed the
open source Archimulator [2] CMP architectural
simulation environment for the experiments mentioned
in this work. Archimulator is an object-oriented
execution-driven application-only architectural
simulation environment written entirely in Java, and
running on Unix/Linux based operating systems. It can

International Workshop on Cloud Computing and Information Security (CCIS 2013)

© 2013. The authors - Published by Atlantis Press 192

mailto:zmgu@x263.net

simulate MIPS II executables in three modes: functional
simulation, cycle-accurate simulation and two-phase
fast forward and measurement simulation. It supports
simulating Pthreads based multi-threaded workloads. In
a typical Pthreads based helper thread program, there
are three threads while running: main thread, helper
thread and Pthreads manager thread. The Pthreads
manager thread takes the role of spawning, suspending
and resuming the helper thread by passing signals to the
helper thread. The three software contexts are mapped
to the hardware threads as follows: C0T0 →main thread,
C0T1 →Pthreads manager thread, C1T0 →helper
thread (C = core, T = thread).

A. Basic Metrics for Helper Thread Prefetching

•Useful vs. Useless Helper Thread LLC Requests. A
helper thread LLC request can be either useful or
useless based on the re-references of its requested data.
Specifically, a helper thread request is useful if a
subsequent main thread request reuses its data before
the LLC displaces its data. Otherwise, a helper thread
request is useless if the LLC displaces its data before a
subsequent main thread request reuses its data.

•Helper Thread LLC Request Accuracy. It is of vital
importance that the helper thread can accurately predict
and prefetch the data that the subsequent main thread
requests will use. For benchmarks with high helper
thread LLC request accuracy, the overall performance
increases as the aggressiveness of the helper thread
prefetching scheme increases. Otherwise, for
benchmarks exhibiting low helper thread LLC request
accuracy, the overall performance degrades due to
shared cache pollution as the aggressiveness of helper
thread prefetching scheme is increased. The helper
thread request accuracy is defined as # Useful HT
Requests / # Total HT Requests, where the # Useful HT
Requests is the number of the LLC lines brought by the
helper thread requests that are re-referenced by
subsequent main thread requests.

•Helper Thread LLC Request Coverage.
Determining how many main thread LLC misses can be
reduced by the helper thread, is insightful in fine-tuning
the helper thread prefetching parameters. Specifically,
Helper thread LLC request coverage is such a measure
of the fraction of all main thread LLC misses in the
baseline version (where helper thread is switched off)
that can be converted into hits in the helper thread
version. The helper thread achieves this reduction of
main thread LLC misses by issuing requests early
enough to convert subsequent main thread LLC misses
into hits. It is defined as # Useful HT Requests / # MT
Misses w/o HT.

•Helper Thread LLC Request Lateness. A helper
thread LLC request is late if it fails to bring the data
from the main memory by the time a main thread LLC
request references the data. Therefore, even though the
helper thread LLC request is accurate, it may only
partially hide the latency incurred by an LLC miss in
the main thread. The helper thread LLC request lateness
can thus be defined as # Late HT Requests / # Total HT
Requests.

•Helper Thread LLC Request Pollution. A helper
thread LLC request is polluting if it evicts prematurely
the useful data that will be referenced by a main thread

LLC request. The helper thread LLC request pollution
can thus be defined as # Polluting HT Requests / # Total
HT Requests.

Figure 1.Timeline for the Breakdown of Helper Thread LLC

Requests

B. Performance Modeling of Helper Thread Prefetching

We can construct a fine-grain breakdown of helper
thread LLC requests, to express helper thread prefetch
usefulness, lateness, pollution and redundancy. In
Figure 1(a), there are four cases based on the relative
positions of the helper thread request and the
subsequent main thread request:

•A late helper thread request, happens when the
main thread request to the data element H arrives after
the helper thread request to H is initiated (t0) but before
the data element H is inserted into the LLC (t1). A late
helper thread request is similar to the following timely
helper thread request but it only partially hides the LLC
miss latency in the main thread request.

•A timely helper thread request, happens when the
main thread request to the data element H arrives after
the helper thread request’s data element H is inserted
into the LLC (t1) but before the data element H is
evicted from the LLC (t2). This case is the result of the
optimal decision made at the time the helper thread
request is initiated, since it evicts the data element (V)
that has larger reuse distance than its own (H). This case
has the most positive impact on the main thread
performance since it reduces one main thread miss.

•A bad helper thread request, happens when the
main thread request to the victim data element V arrives
after the helper thread’s data element H is inserted into
the LLC (t1) but before the data element H is evicted
from the LLC (t2). This case is the result of the
non-optimal decision made at the time the helper thread
is initiated, since it evicts the data element (V) that has
smaller reuse distance than its own (H). In other words,
it displaces an LLC line that will later be needed by the
main thread. This case should be prevented as much as
possible, which is harmful for the main thread
performance.

•An ugly helper thread request, happens when the
main thread request to the data element H arrives after
the helper thread request’s data element H is evicted
from the LLC (t2). This case is the result of the ugly
decision made at the time when the helper thread
request is initiated, since both its data element (H) and
the victim data element (V) have larger reuse distances
than the subsequent main thread data element (M). This
case has little performance impact on the main thread
performance other than increases the on-chip
interconnect bandwidth consumption, since the helper
thread’s data element is not reused by the main thread

193

before evicted and it does not evict any data element
that will be used by the main thread.

If the helper thread request is too late that it even
can not catch up with the main thread, then when it
arrives at the LLC, it may find the data is already
present in either LLC or LLC MSHRs. Therefore, as
depicted in Figure 1(b), there are two more cases based
on the relative positions of the main thread request and
the late helper thread request:

•A redundant_mshr helper thread request,
happens when the helper thread rquest arrives after the
main thread request is initiated (t0) but before the data
element is inserted into the LLC (t1).

•A redundant_cache helper thread request,
happens when the helper thread request arrives after the
main thread request’s data element is inserted into the
LLC (t1) but before the data element is evicted from the
LLC (t2). These two cases contribute nothing but the
waste of the on-chip interconnect bandwidth to the
overall performance.

Hence we have the following theorem1.
Theorem 1: For some benchmark with helper

threads, after the percents of late, timely, bad, ugly,
Redundant_MSHR and Redundant_Cache to helper
thread LLC prefetching requests are computed
respectively, and their distribution has been gotten.

a-1. if the sum of late-percent and timely-percent
dominates the distribution, then the performance
improvement is true;

a-2. if the percent-sum of bad, ugly,
Redundant_MSHR and Redundant_Cache dominates
the distribution, then the performance improvement is
false;

a-3. if the sum of late-percent and timely-percent is
nearly equal to the percent-sum of bad, ugly,
Redundant_MSHR and Redundant_Cache, then the
performance improvement is uncertain.

III. IMPLEMENTATION

A. Hardware Support

A few hardware components are added in the
aforementioned Archimulator simulator to implement
the prefetch breakdown:

•LLC Request and Replacement Event Tracking.To
monitor the request and replacement activities in the
LLC, we need to consider the event when the LLC
receives a request coming from the upper level private
cache, whether it is a hit or a miss.

•Helper Thread LLC Request State Tracking. In
order to track the helper thread request states in the
LLC, we need to add one field named threadId to each
LLC line to indicate whether the line is brought in by
the main thread or the helper thread or otherwise
invalid.

•Helper Thread LLC Request Victim State
Tracking.In order to track victims replaced by helper
thread requests, we need to add an LRU cache named
Helper Thread Request Victim Cache (HTRVC) to
maintain the LLC lines that are evicted by helper thread
requests. The HTRVC has the same structure of the
LLC, and there is a direct mapping between the LLC
lines and the HTRVC lines. One field called
HTRequestTag is thus added to HTRVC to enable

reverse lookup in the HTRVC by the helper thread
request tag in LLC. The HTRVC has the sole purpose of
profiling, thus it has no impact on the program
performance.

•Detecting Late Helper Thread LLC Requests.In
order to measure late helper thread requests, we need to
identify the event when a main thread request hits to an
LLC line which is being brought by an in-flight helper
thread request coming from the upper level cache. This
can be accomplished by monitoring the LLC Miss
Status Holding Registers (MSHRs).

B. Tracking and Classifying Helper Thread Prefetches

Changes to the contents of the LLC and HTRVC
take place when filling an LLC line and servicing an
incoming LLC request. Therefore, corresponding
appropriate actions should be taken in the LLC and the
HTRVC to track the helper thread LLC requests and
victims used in the breakdown of helper thread requests.

•On Inserting an LLC Line When filling an LLC
line, we should consider four non-trivial cases as listed
below: Case 1. A helper thread request fills an
INVALID line. In this case, no eviction is needed, but a
new NULL entry should be inserted in the HTRVC to
maintain the invariant since the data brought by a new
helper thread request arrives in the LLC. Case 2. A
helper thread request evicts an LLC line which is
previously brought in by a main thread request. In this
case, a new DATA entry should be inserted in the
HTRVC to maintain the invariant. Case 3. A helper
thread request evicts an LLC line which is previously
brought by a helper thread request. In this case, the
stored HT request tag should be updated to the
incoming helper thread request tag in the corresponding
victim entry in the HTRVC. Case 4. A main thread
request evicts an LLC line which is previously brought
by a helper thread request. In this case, since the data
brought by a helper thread request is removed, its
corresponding victim entry found in the HTRVC should
be invalidated to maintain the invariant.
 •On Servicing an Incoming LLC Request When
servicing an incoming LLC request, we should consider
three nontrivial cases as listed below. The involved LLC
line’s inflightThreadId is recorded when the incoming
LLC request from one thread hits the LLC MSHRs, and
its data is being brought in by an earlier LLC request
from another thread. Case 1. If the incoming LLC
request is from the helper thread, we need to first check
the contents of LLC and LLC MSHRs in order to
determine if the helper thread request is of either a
redundant_mshr or a redundant_cache type. Case2.A
bad helper thread request occurs when an incoming
main thread LLC request hits a victim entry found in
the HTRVC, but misses in the LLC. Case 3. A good
helper thread request, either late or timely, depending
on whether the value of inflightThreadId is valid or not
in the involved LLC line, occurs when an incoming
main thread LLC request hits the data brought by a
previous helper thread request in the LLC but misses in
the HTRVC.

• On an LLC Line is Invalidated When an LLC
line is invalidated, the involved LLC line’s helper
thread request state is cleared. If the LLC line is brought
by the helper thread, then the corresponding HTRVC

194

entry is invalidated as well.

IV. EXPERIMENTAL RESULTS

We perform the experiments using selected
memory-intensive, pointer traversal benchmarks mst
and em3d from the Olden pointer traversing benchmark
suite and 429.mcf from CPU2006. All applications are
cross-compiled to MIPS II executables using gcc flags
“-O3”. Default values of the helper thread prefetching
lookahead and stride parameters are chosen as 20 and
10 respectively, if not specified explicitly. To reduce the
simulation time, we first fast forward to the
pthread_spawn(..) function call for spawning the helper
thread in the program code, and then run in detail for
200 million instructions on the main thread. Although
there is no pthread_spawn(..) call in the baseline
program code, we can insert the same pseudo-calls in
the corresponding code location as compared to the
helper thread prefetching version.

A.Performance Sensitivity to L2 Size and Associativity

Figure2 shows the speedup impact of L2 size and
associativity on performance of mst,429.mcf and em3d.
The average speedup of mst, 429.mcf and em3d is about
1.74, 1.04 and 0.98 respectively. For mst of high
performance, when the L2 size is greater than 128KB,
the execution time remain nearly constant. This is
because the average percent of late, timely, bad, ugly,

Redundant_MSHR and Redundant_Cache to helper
thread LLC prefetching requests is about 78%, 20%, 0,
0.3%, 0.2% and 1.5% respectively, according to
theorem1(a-1), the usefulness of late and timely is
almost 98%. For 429.mcf, there is little performance
improvement too, and when the L2 size is greater than
128 KB, the execution time reduces little, and the
execution times remain nearly constant when the L2
associativity is greater than 8 ways. However, for em3d,
there is not any speedup. This is because the average
percent of late, timely, bad, ugly, Redundant_MSHR
and Redundant_Cache to helper thread LLC prefetching
requests is about 0, 1.6%, 0, 97%, 0.002% and 1.2%
respectively. According to theorem1(a-2), only the ugly
is almost 97%, its performance improvement is false.

B.Performance Sensitivity to Helper Thread Parameters

Table1 shows the impact of prefetching parameters
such as lookahead and stride on performance and helper
thread prefetch breakdown, when L2 Size=1MB, L2
Assoc=8, the em3d_baseline execution time is
963314606. Compared em3d (lookahead=20,stride=10)
with Figure 2, the minimum reduction of execution time
is achieved when the stride is 10 and there is no
lookahead. The speedup is changed into 1.23. From the
view of breakdown of helper thread L2 requests of
em3d_ht, Timely helper thread requests were improved
distinctly.

From the above discussions of the experimental
results on the data intensive, pointer traversal
benchmarks from Olden and CPU2006, we can
conclude that our performance model of helper thread is
effective. Meanwhile the relationship between the
lookahead-value and the stride-value reflects the
dynamic balance of memory accesses skipped in the
prelude and done in stable phase in the helper thread

prefetching scheme. For enlarging the cases of timely
and late, and reducing the cases of ugly and bad, we
must select the optimal values of helper thread
parameters such as lookahead and stride by analyzing
the memory access patterns of target workload.

Figure 2. Performance Impact of L2 Size and Associativity

TABLE1. PERFORMANCE IMPACT FOR PARAMETER

VALUES OF em3d_ht

Stride
Look-
ahead

Num_
Cycles

Late Timely Bad Ugly

Redu
ndan
t_M
SHR

Redundant_
Cache

.10 0 782029586 480 1232504 0 1300084 74 26526

10 10 973337567 73 49317 0 3046216 78 36726

20 0 793020908 688 1165799 0 1413427 69 24536

20 10 973439744 77 48983 0 3060318 84 32904

40 0 818276057 813 1010254 0 1648486 81 24643

40 10 973462738 80 48724 0 3061356 80 32359

This work was supported by the National Natural
Science Foundation of China under the contract No.
61070029.

REFERENCES

[1] S. Byna, Y. Chen, X.-H.Sun,“A taxonomy of data prefetching
mechanisms,” Proceedings of the International Symposium on
Parallel Architectures, Algorithms, and Networks(ISPAN ’08),
IEEE Computer Society, Washington DC, USA,2008, pp.
19–24.

[2] M. Cai, Archimulator open source cmp architectural simulator.
http:// github.com/mcai/Archimulator/.

[3] M. Cai, Z. Gu, “Evaluating the memory system performance of
software-initiated inter-core llc prepushing,” Proceedings of the
2011 Ninth IEEE International Symposium on Parallel and
Distributed Processing with Applications Workshops
(ISPAW),2011, pp. 216–221.

[4] J.-C. Chiu, etc., “A unitable computing architecture for chip
multiprocessors," The Computer Journal 54 (12), 2033–2052,2011

[5] Z. Gu, Y. Fu, etc., “Improving performance of the irregular data
intensive application with small computation workload for
CMPs,” Proc. ICCP Workshops. IEEE, pp. 279–288,2011.

[6] J. L.Henning, “Spec cpu2006 benchmark descriptions,” ACM
SIGARCH Computer Architecture News 34 (4), 1–17, 2006.

[7] N.D.E.Jerger, E.L.Hill,M.H. Lipasti,“Friendly fire: understanding
the effects of multiprocessor prefetches,” ISPASS. IEEE
Computer Society, pp. 177–188,2006.

[8] B. Mehta, etc., “Cache showdown: The good, bad and ugly,” Tech.
rep.2004.

[9] A. Rogers, etc.,“Supporting dynamic data structures on
distributed-memory machines,” ACM Transactions on
Programming Languages and Systems 17 (2), 233–263,1995.

[10] V. Srinivasan, etc.,“A prefetch taxonomy,” IEEE Transactions on
Computers 53 (2), 126–140,2004.

195

http://github.com/mcai/Archimulator/
http://github.com/mcai/Archimulator/

