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Abstract—Quasigroups are algebraic structures closely 

related to Latin squares which have many different 

applications. Nonlinear pseudo random sequences based on 

quasigroups have important applications in cryptography. The 

quasigroups which generate nonlinear pseudo random 

sequences with large periods are only found by computer 

statistical search until now. In this paper, we discuss the 

probability distribution of periods factors of quasigroups by 

means of Frobenius groups theory. 
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I.      INTRODUCTION 

Many scientific experiments require large amounts of 
random input data in order to simulate some process. Pseudo 
random sequences are inevitable in many fields like crypto-
graphy, communication, and automatic control etc. For this 
reason the field of pseudo random generators is widely 
exploited. Pseudo random sequence generators (PRSG) 
produce sequences of elements that imitate natural random 
behavior. However, widely available PRSGs have limited 
periods. But the PRSG designed using quasigroup processing 
is highly scalable and with arbitrary large period [1]. 

A quasigroup (Q, ) is a groupoid (i.e. algebra with one 

binary operation  on the set Q) satisfying the law: 

(u,vQ)(!x,yQ)(xu=v&uy=v). 

A Latin square on a set Q is an QQ array such that 

every symbol occurs in every row once, and also in every 

column once. It is fairly well known that (e.g., see [2]) the 

multiplication table of a quasigroup defines a Latin square; 

that is, a Latin square can be viewed as the multiplication 

table of a quasigroup with the headline and sideline 

removed. 

      It was noticed in [3] and [4] that quasigroups can be 

very useful for cryptographic purposes, mainly because 

there is a huge number of quasigroups operations on a given 

finite set, and it is easy to define the encoding and decoding 

functions by using the quasigroup operations as well. 

      Let Q be a set of elements (Q  2). We denote by Q
+ 

= 

{x1x2xk | xi   Q, k   2} the set of all finite sequences 

with elements of Q. Assuming that (Q,) is a given quasi-

group, for a fixed element   Q, we define transformation 

E, :  Q
+

  Q
+ 

as follows [5]: 

mm yyyxxxE  2121, )( 
, 

where 









 .1,2,1,

,

11

11

mixyy

xy

iii 

  

Map E,  is called an e-transformation of Q
+
 based on the 

quasigroup operation  with leader . 

      Edon80 was submitted to the eSTREAM project as a 

hardware stream cipher. It was designed by Gligoroski, 

Markovski, Kocarev, and Gusev and its original description 

is given in [6]. It has a unique design among known stream 

cipher designs: it concatenates 80 basic building blocks 

derived from four small quasigroups of order 4. Edon80 

process e-transformation to the initial string consisting of 

letters “0 1 2 3 0 1 2 3 0” in 80 steps and output every 

second letter that forms the key-stream of the stream cipher. 

There are 576 quasigroups of order 4, and for Edon80, by 

Gligoroski's experiments, 384 of them are suitable, 64 of 

them are very suitable [7]. All the data are obtained by 

experimental method using computer. It is reasonable to 

expect that not all quasigroups provide the same period of 

the PRSG and we can easily observe that the period growth 

of the PRSG designed using quasigroup processing is at 

least linear (see [8]). Quasigroups of arbitrary order can be 

used to generate pseudo random sequence algorithm of 

sequence cipher system. But for higher order of quasigroups, 

their statistical test are almost impossible. In this paper, we 

research probability distribution of period factors of quasi-

groups of high orders by using Frobenius groups theory. 

II. DEFINITIONS AND THEOREMS ON THE PERIOD FACTOR 

DISTRIBUTION OF A QUASIGROUP 

       We say that a string X = x1x2xn  Q
+
 where xi   Q 

has a period p if p is the smallest positive integer such that 

xi+1 xi+2  xi+p = xi+p+1 xi+p+2   xi+2p for each i   0.  
       Definition 2.1: Let Q be an n-set and  be a permutation 

on Q. x  Q, the period of sequence x (x) 2
(x) 

i
(x)is called the period factor of  on  x and denoted by 

f(x). 

       Suppose Q is a set and  is a permutation on Q, it is easy 

to see that if x  Q is in a cycle of  of length k, then f(x) = 
k . 

      Theorem 2.2: [9] Suppose Q is an n-set and  is a permu-

tation on Q. If the type of  is nn
 21 21 , i.e.,  has i  

cycles of length i (i = 1, 2, ,n), and the probability distri-

bution on Q is uniform: {P(x) = 1n : x  Q}, then the 

probability distribution of  f  is  
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       Definition 2.3: Let Q = {1, 2,, n} and (Q, ) be a 

quasigroup, L = (li,j)nn be the Latin square of the multi-

plication  table of (Q, ). i  Q,  the permutation 
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is called the i-th column permutation of L (or (Q, )).  

      Theorem 2.4: [9] Let Q = {1, 2,  , n}, (Q, ) be a 

quasigroup and 1, 2,,n be the column permutations of 

(Q, ). Suppose X = x1x2 xm Q
+ 

is periodic with 

period p. 
,0

E  is the e-transformation function of Q
+
 based 

on the operation  with leader 0  Q and 

  mm xxxEyyyY 21,21 0  
. 

If 0 is in a cycle of length k of the permutation 

11 xxx pp
 


 , then Y is periodic and period of Y is 

k  p. 

       Definition 2.5: Suppose Q is an n-set and (Q, ) is a 

quasigroup, 1, 2, n are the column permutations of (Q, 

) and S = {1, 2, , n }. For any positive integer p, let 

1 1 1 2{ ... :1 , ,...,  }
p p

p

i i i pS i i i n  
     be a multi-set. (, 

x)  pS
 Q, the period of sequence x (x) p

(x) is 

called the period factor of (Q, ) of degree p with  and x 

and denoted by  xf p ,)( 
. The function  xff pp ,)()(    with 

domain pS
 Q is a random variable with sample space N = 

{1, 2,, n}. 
)( pf  

is called the period factor of (Q, ) of 

degree p. 

     Theorem 2.6: [9] Suppose Q is an n-set and (Q, ) is a 

quasigroup, and S = {1, 2,, n } is the set of column 

permutations of (Q, ). Let {1, 2,, v} = S be the 

permutation group generated by S, and suppose the type of  

i is nn
 21 21 (i =1, 2, , n). Suppose the probability 

distribution on Q is uniform: {P(x) = 1n : x  Q}. For any 

positive integer p, if the multi-set 
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Every application of an e-transformation in Edon80 can 

be seen as a random variable  that receives values from the 

set {1, 2, 3, 4}. Every  has the same probability distribu-

tion as the period factor distribution of the quasigroups. 

III. THE PERIOD FACTOR OF THE QUASIGROUPS BASED ON 

FROBENIUS GROUPS 

      A Frobenius group is a transitive permutation group 
which is not regular, but in which only the identity has more 

than one fixed point. Historically, finite Frobenius groups 
have played an important role in many areas in finite group 
theory. The detailed definition of Frobenius groups is given 
in [10]. 
      Theorem 3.1: [10, Example 3.4.1] Let U denote a sub-
group of the group of a finite field F. Then the set G 
consisting of all permutations of F of the form 

 :t  with   U,   F 

is a Frobenius group. 

     Lemma 3.2: Let Q = {1, 2, , n} be the set of all 

elements from a finite field F, and let  (  0) be a binary 
operation defined on Q:  

.,,: Q  
 

Then the pair (Q, ) is a quasigroup. 

Proof : For every i, j   Q, the equations 

ji x    1
 and 

jix  2
 

have a unique solution x1 = j i   Q, x2 = (ji)    Q. 

So (Q, ) is a quasigroup. 

      Since   0, we have n1quasigroups from Lemma 3.2. 

And if  is a primitive root of a finite field F, then the n1  

quasigroups are (Q, 1), (Q, ),, (Q, 
n-2

). 

     Definition 3.3: Let Q = {1, 2, , n} be the set of all 

elements from a finite field F and (Q, ) be a quasigroup 

from Lemma 3.2. Let 
nnlL  )( 
 be the Latin square of the 

multiplication table of (Q,) (i.e.  l ), the 

permutation 
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is called the i-th column permutation of L (or (Q, )). 

     Let F = {1, 2, , n} be a finite field of order n. 1 is 

the identity element and let 1 = 0 be the zero element of F. 

Let },,0|:{ FT iii     be a set of per-

mutations on F from G of Theorem 3.1, then we know that 

T is a Frobenius group. 

     Theorem 3.4: Let F = {1, 2, , n} be a finite field of 

order n, },,0|:{ FT iii    be a Fro-

benius group. (Q, 1) is a quasigroup from Lemma 3.2 when 

 = 1 is the identity element of F. Then the probability 

distribution of  )(

1

pf  is 
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for any positive integer p. 

Proof : (Q, 1) is a quasigroup of order n and 11, 12, , 

1n are the column permutations of (Q, 1). 11 from the set 

T is the identical permutation and the type is n1 . Since T is 

a Frobenius group, 1i has no fixed point for i  2. So the 

type of 1i is 
1n (i = 2, 3, , n). 

      Let S = {11, 12,  , 1n }, it is easy to see 

that 11 12 1, ,..., n    {11, 12, , 1n }, we have {11, 

12, , 1n }
p
 = n

p-1
{11, 12, , 1n }. Applying Theorem 

2.6, we have  
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So the probability of 
)(

1

pf  is 
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integer p. 

     According to Theorem 3.4, the possible value of )(

1

pf is 1 

or n. And the expected value of )(

1

pf is E ( )(

1

pf ) = 1  1n + 

n  (n1)n = (n
2
n+1)n. 

      Theorem 3.5: Let F = {1, 2, , n} be a finite field of 

order n, },,0|:{ FT iii     be a Frobe-

nius group and (Q, ) be a quasigroup from Lemma 3.2. If  
is a primitive root of the field F, then the probability distribu-

tion of 
)( pf


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Proof:  is the primitive root of the field F, i.e. the multipli-

cative order of  is n1. (Q, ) is a quasigroup of order n. 

1, 2, , n are the column permutations of (Q, ).

 

      
1 :  ( )F     is a permutation from T and 0 is 

the fixed point of 1. Let 1 is the identity element of F, then 

we have 1 = (1  2
 n-2

) since  is the primitive root of 

the field F, and the type of 1 is 11 )1(1 n . For i  1,  

ii  : , and we have i = (1 +i 
2
+i+ i   

n-2
+n-3i+i)(i(1)) since n-1
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n-3i+ +i = 

1+(n-2
+n-3

++1) i = 1+0i = 1. And  = i (1) is the 

fixed point of i. So the type of i is 
11 )1(1 n . 2, , n 

have the same type with 1. In the similar way, when   0 

is not the primitive root of the field F, 2, , n have the 

same type with 1. 

      Let S = {1, 2, , n }, 
jiji    2:   

is the product of the two permutations (i, j = 1, 2, , n). 

And we know that i+ j  F. 
tt
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We know that the type of i is 11 )1(1 n . Applying the 

property of Frobenius groups and the theory of permutation 

group, when p  k (mod (n1)) and k | (n1), 
ik

  has a 

fixed point 
k

i









1
 and has k cycles of length 

k

n 1 . So 

the type of 
ik

  is k

k

n
)

1
(11 

. When p  k (mod (n1)) and 

k |  (n1), we know that the type of 
ik

  is 11 )1(1 n . The 

type of 11 is 
n1  and the type of 1i is 1n (i = 2, 3, , n). 

     From the above discussion we know that when p  0 

(mod (n1)),  

n
nn

n
n

n
fp p

p

n

i

i

p

ip

p 111
)1( 1

1
1

1

)(

1

)(  




  


, 

00)( 1

1
1

)(

1

)(  




  p

p

n

i

ih

p

ip

p n
n

h
n

n

h
hfp 


 

)1,,2(  nh  , 

,
1

)1()( 1

1
1

)(

1

)(

n

n
nn

n

n
n

n

n
nfp p

p

n

i

in

p

ip

p 
 




  


 

and the probability distribution of  
)( pf


 is
















n

n

n

n
11

1
. 

      When p  k (mod (n1)), k | (n1), 

n
nn

n
n

n
fp p

p

n

i

i

p

ip

p 111
)1( 1

1
1

1

)(

1

)(  




  


, 

,
1

1

)
1

( 1

1
1

1

)(

1

1
)(

n

n
nkn

n

k

n

n
nk

n
fp p

p

n

i k

n
i

p

ip

k
n

p 







 








  


 

                           

and the probability distribution  of 
)( pf


 is 























n

n

n

k

n

11

1
1

. 

      When p  k (mod (n1)), k |  (n1), 

n
nn

n
n

n
fp p

p

n

i

i

p

ip

p 111
)1( 1

1
1

1

)(

1

)(  




  


, 

218



n

n
nn

n

n
n

n

n
nfp p

p

n

i

ni

p

ip

p 1
1

11
)1( 1

1
1

1

)(

1

)( 






 




  


 

 and the probability distribution of 
)( pf


 is 

















n

n

n

n
11
11 .     

This completes the proof. 
     According to the Theorem 3.5, we know that the possible 

value of )( pf


 is 1, n1, n, or 
k

n 1
. The expected value of 

)( pf
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is 
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     When  is not the primitive root of the field F, for 

example m
 = 1 (m  n1), we may calculate the period 

factor distribution and the expected value in the similar way. 
We know that it is convenient to use quasigroup of order 2

m
 

in computers. So, in the following, we consider the finite 
fields of order 2

m
. In Frobenius group G, only the identity 

has more than one fixed point. So if 2
m
 – 1 is a prime number, 

we have the following corollary. 

     Corollary 3.6: Let F = {1, 2, , n} be a finite field of 

order 2
m
, },,0|:{ FT iii    be a Fro-

benius group and  (Q, ) be a quasigroup from Lemma 3.2. 
When 2

m
 – 1 is a prime number, the period factor distribution 

of (Q, ) is 
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Proof: Since the order of the field F is 2
m
, there are 2

m
(2

m
1) 

permutations in the Frobenius group. When  2
m
 – 1 is a 

prime number, we know that the type of i (  1, i = 1, 2, 

 , 2
m
 ) is 1

1
(2

m
1)

1
. When  = 1, the type of 11 is 

m21  and 

the type of 1i (i = 2, 3,  , 2
m
) is 1)2( m . From the proof of 

Theorem 3.5, we can get that the period factor distribution of  

(Q, ). 
      Applying Corollary 3.6, we know that the possible value 

of )( pf
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 is 1,  2
m
1, or 2

m
. The expected value of )( pf
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 is 
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When the order of the field F is q
m
 (q  2 is a prime), and q

m
 

– 1 is a prime, then we can get a similar conclusion. 

IV.  CONCLUDING REMARKS 

     We have used the Frobenius group theory to discuss 

quasigroups with large period factors expected values. If the 

order of the quasigroup n is a prime power, the expected 

value of the period factors of the quasigroup based on 

operation     is 

2

2
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, 0 (mod 1),
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 If n = 2
m
, and n1is a prime number, then we have the best 

case as shown in Formula (1), and the best case is always 

obtained when n, the order of a quasigroup, is a prime 

power, and n1 is a prime. 
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