
An Improved Multimedia Conference System with Load Balance

Zhang Yundu, Shang Yanlei
The State Key Lab of Networking and Switching

Beijing University of Posts and Telecommunications
Beijing, China

yundu0819@gmail.com, shangyl@bupt.edu.cn

Abstract—With the development of economics and the
globalization of trade, the Multimedia Conference System is
now widely used and the number of its users increases
exponentially. But a single server can’t handle the high
concurrent user requests effectively. In this paper, we
improved the Multimedia Conference System with load
balance technology. With the load balance technology, the
robustness and availability of the system can be enhanced
significantly.

Keywords-load balance, cluster, Nginx, Multimedia
Conference System

I. INTRODUCTION
With the explosive popularity of the Internet and the

World Wide Web, most popular web sites confronted with a
problem that the server overloaded caused by the increasing
number of concurrent accesses. In order to process the user
requests timely, increase the network throughput and
improve the quality of service, it’s necessary to upgrade the
hardware and software of the sever. But the the hardware is
expensive and non-scalability. In this case, server cluster
system appears. The sever cluster system refers to a server
group which is composed of more than one homogeneous or
heterogeneous severs and can provides services that are
transparent for the external users. And it becomes a key point
that how to achieve a reasonable distribution of load between
multiple servers and avoid appearing one server with full
load while other servers with little load. In this situation, the
load balance technology was born. In recent years, cluster
technology and load balance technology got fully developed
and they have significant effect on solving the problem of
overloading.

As a web service, the Multimedia Conference System
also has to face the problem that the overload of the server
and uneven distribution of resources when there are too
many users access the system. Using cluster and load
balance technology, the requests the system received can be
evenly distributed on each server, thus we can reduce the
response time of the requests and improve the resource
utilization.

The Multimedia Conference System proposed in this
paper contains Client Layer, Load Balancer Layer, Server
Cluster Layer and Media Server Layer. The Client Layer
receives the requests of the user including creating a
conference and joining an existing conference. The Load
Balancer Layer redirect the user’s request to one of the
application servers in the cluster according to the load
balance algorithm and the different parameters from the

Client Layer. The application servers in Server Cluster Layer
call the Media Server resources and return them to the Client
Layer. This implements a basic process of the system. The
Load Balancer Layer contains four modules including User
Authentication, Decision-Making, Redirecting and Log
Parsing. With the Load Balancer Layer and its load balance
algorithm, the user’s request can be distributed on different
servers and those who want to join the same conference can
be allocated to the same application server. Thus we can
minimize the response time of the request, improve the
resource utilization and also ensure the conference can be
held correctly.

The rest of this paper is organized as follows: we
describe related work in section II. Section III presents the
architecture of the Multimedia Conference System. In
section IV, we display the implementation of the Load
Balancer Layer in detail. Some experiments of key features
of load balancer in section V. We conclude in section VI.

II. RELATED WORK
Load balancing has been a hot research topic since the

1980s. After in-depth study by a large number of researchers,
load balance technology got rapid developed.

Many domestic and foreign manufacturers have launched
a dedicated load balancer for cluster systems. Currently
mature cluster systems provided effective load balancing
schemes, such as Microsoft cluster, WebSphere and so on.

In China, there are several universities studying the load
balance cluster system, such as Tsinghua University,
Zhejiang University and the National University of Defence
Technology. And Tsinghua University implements the
scalable parallel Web server cluster system – TH-Web
Cluster.

May 1998, Dr. Zhang Wensong presided over the
development of the Linux Virtual Server (LVS) [1] Project.
The project proposed a load balance scheduling solution
based on IP layer and based on the content request
distribution. And now the LVS has been implemented in the
Linux kernel. The project can make a group of servers
constitute a virtual server which is scalable and can provide
high available network services. At present, the LVS
technology has been widely supported. Many well-known
international large companies, such as Red Hat, Turbo Linux,
Ericsson and Red Flag Software have launched some load
balance software based on LVS. With the maturity of the
Linux operating system, LVS’s performance becomes more
stable and its application scope will be more widely.

Besides the LVS which is open source, there are still two
widely used open source software of load balance. One is

International Workshop on Cloud Computing and Information Security (CCIS 2013)

© 2013. The authors - Published by Atlantis Press 220

Tomcat-Connector [2] which is developed by the Tomcat
Project team and the other is Nginx [3] which is developed
by Russian researchers. They both encourage enthusiasts
redevelop and optimize their basic functions.

Nginx can achieve load balance function and still can be
used as a lightweight HTTP server [4]. Therefore, our system
adopts Nginx to implement the load balance function. We
make a brief introduction of Nginx, and the architecture of
Nginx is shown in Fig. 1.

Figure 1. The Nginx Architecture Diagram

Nginx consists of four core modules: core, event, http
and main. Each module also contains its expansion modules.
Among them, the core module definition in the Nginx
important data structure; the HTTP module defines the
HTTP request and response processing API; files under the
src/http/modules are http expansion module. Nginx receives
the user’s HTTP request and distribute them to the handler or
the load balancer on the basis of the configuration file. When
the request is assigned to the load balancer, it will forward
the request as HTTP1.0 agreement to the backend server.
After responding from the server, the load balancer will
forward the response, and through several filter processing,
the response will eventually returned to the user as HTTP
response.

III. ARCHITECTURE OF MULTIMEDIA CONFERENCE
SYSTEM

The Multimedia Conference System has four layers:
Client Layer, Load Balancer Layer, Server Cluster Layer,
and Media Server Layer. The architecture is shown in Fig. 2.

A. Client
The main function of the Client is to send user requests,

receive the server responses and present the login interface
and main interface of the system. When the client receives an
input event from the user, it sends the request to the backend
server and then waits for responses. After receiving the
response, the Client obtains the media data and other relevant
data and shows them to the user.

Figure 2. The Architecture of Multimedia Conference System

B. Load Balancer
The main function of the Load Balancer is to receive the

request from the Client and verify if the request is legal. If
the request is illegal, the page will be returned to the login
interface and prompt error messages. If the request is legal,
the load balancer will redirect the request to one of the
application servers in the cluster according to the load
balance strategy.

C. Server Cluster
The main function of the application sever in the server

cluster is to receive and process the request from the upper
layer and respond to the request. When the application server
received a request, it will process it according to the type of
the request. There are two types of the request. One is
request for creating a conference and another is request for
joining an existing conference. If the request is for creating a
conference, the application server will make the user in the
creating conference process. If the request is for joining a
conference, the application server will make the user in the
conference process.

D. Media Server
The main function of the Media Server is to collecting

the audio and video and also including codec. The media
server is controlled by the application server which can
produce SIP signals send to the media server. Thus, the
media server can provide the media resources that the
Multimedia Conference System needs on the IP network.

IV. IMPLEMENTATION OF LOAD BALANCER

A. Framework of the Load Balancer
The framework of the Load Balancer Layer of the

Multimedia Conference System is shown in Fig. 3.
The whole load balancer is divided into four modules:

User Authentication, Decision-Making, Redirecting and Log
Parsing. We will make a detailed introduction of these four
layers in the following.

221

Figure 3. The Framework of the Load Balancer of Multimedia

Conference System

 User Authentication

The User Authentication module is used for receiving the
authentication information, including user name, user
password and check code. This module will verify whether
the user is legal according to the information. If the user is
illegal, the page will turn back to the login interface and
prompt with error message. If the user is legal, then the
system will proceed according to the user’s other choice.

 Decision-Making

If the user’s authentication is successful, then enter the
Decision-Making module. There are two identities in this
system and the user can choose in the Client interface. Those
who choose the button ‘create a conference’ will be the
chairman, and those who choose the button ‘join a
conference’ will be a participant. This module is used to
distinguish the user’s identity according to the choice that the
user chose in the login interface. And the Decision-Making
will make corresponding decisions according to their
identities. If the user is a chairman, the process will enter the
load balancing Redirecting module.

If the user is a chairman, the process will put the request
to the Redirecting module directly. If the user is a participant,
the process will get the real server IP from the database. The
real server is a server in the Server Cluster on which the
conference the user wants to join is held. And the real server
IP will be an important parameter in the request which will
be passed to the redirecting module.

 Redirecting

The Redirecting module is the http module in Nginx
which is mentioned above in Fig. 1. The Redirecting module
redirects the request from the Decision-Making module.

If the user is a chairman, the request will be redirected
into the upstream resource pool. The instruction ‘upstream’
is mentioned in Fig. 1 and its main function is to implement
load balance. Then the Nginx will choose an application
server from the resource pool according to the load balance
strategy [5] [6], such as Round-Robin algorithm and the IP-
Hash algorithm. The application server which is chosen will
process the request. At the same time, the log will record the
corresponding relationship between the client IP and the real

server IP which really processed the request. If the user is a
participant, Nginx will redirect the request to the
corresponding server according to the server IP which is
contained in the request from the Decision-Making module.

 Log Parsing

The Log Parsing module is used to record the results of
the Redirecting module, such as the corresponding
relationship between the client IP and the real server IP.

If the user is a chairman who wants to create a
conference, the Redirecting module will process user
requests with a load balance strategy. After the request is
redirected to one of the application servers, the log will
record the redirect result. If the user is a participant who
wants to join the conference, it will be necessary to get the
real server IP on which the conference is held. The Log
Parsing module can record the real server IP.

B. Key Technologies

1) Log Parsing

We can get the real server IP through Log Parsing. The
real server is the one who really processed the user request.
And the real server IP will be an important parameter for the
subsequent participant who wants to join this conference.

General parameters used in the log are as the following
Table I:

TABLE I. GENERAL PARAMETERS

Parameter Explanation

$remote_addr record the client IP

$remote_user record the client user name

$time_local record the access time and time zone

$request Record the request URL and HTTP protocol

$status record the request status, success is 200

$body_bytes_sent record the body size send to the client

$http_referer record the link from which access this page

$http_user_agent record the client browser information

The parameters and ‘$’are used in the ‘log_format’ instruction.

In order to get the real server IP through the upstream

module, there are three important parameters listed in Table
II:

TABLE II. IMPORTANT PARAMETERS

Parameter Explanation

$upstream_respon
se_time

record the backend processing time and the
agent’s response time

$upstream_status record the status of the backend

$upstream_addr record the IP address and port of the backend

222

2) HttpUpstreamModule
The upstream module [7] is mainly used to do the load

balance using the server resources which are listed in the
upstream field. The algorithms used in this part including
Round-Robin, the least number of connections and IP-Hash.

The upstream module has two main commands: upstream
and server. In the upstream field, there are load balancing
resources. In the server field, there is a location field. And in
the location field, we can use “proxy_pass” to proxy a URL
or use “rewrite” to rewritten the URL. There is an example
shown in Fig. 4:

Figure 4. An Example of Upstream Module

3) HttpRewriteModule

We can use the HttpRewriteModule (one of the Nginx
modules) redirect the request that Nginx received. This
module makes it possible to change URL using regular
expressions (PCRE), and to redirect and select configuration
depending on variables.

If the directives of this module are given at the server
level, then they are carried out before the location of the
request is determined. If in that selected location there are
further rewrite directives, then they also are carried out. If
the URI changed as a result of the execution of directives
inside location, then location is again determined for the new
URI.

Nginx rewrite rules related instructions are if, rewrite, set,
return, break and so on. The ‘rewrite’ instruction is most
important.

Syntax format for rewrite is:

rewrite regex replacement [flag]

Take the participant join a conference for an example, the
redirect steps as follows:

 Get the real server IP that the participant wants to
join;

 Match the user request with the location field in
nginx.conf file;

 Using the PCRE (regex) in the rewrite field to match
the server IP in order to redirect the request.

 The process of redirecting is over. Jump out of the
rewrite module with the break instruction.

V. EXPERIMENTS AND EVALUATION
We have already installed [8] [9] the Nginx on the load

balancer server with the Ubuntu operating system. The same
Multimedia Conference System is deployed on every server
in the server cluster. In order to see the effect of the load

balancing, we marked the main interface of the Multimedia
Conference System on every server with different markers to
show the difference between servers. Now we will test the
system in two aspects: the main interface with different
marks and the logs that Nginx exported.

A. Experiment of Redirecting
The main purpose of this part is to verify whether the

user can access the main interface of the system after
redirecting.

The followings are detailed steps of the experiment:
Step 1: Input the user name, user password and check

code for user authentication. The server will call the User
Authentication module to process the authentication request.
When the authentication is successful, the two buttons
“create a conference” and “join a conference” can be pressed.

Step 2: Click “create a conference” button, a dialog box
is shown, fill in the conference information and submit the
form. After the background processing, the main interface is
shown in Fig. 5.

Step 3: Repeat the above steps, and a main interface with
a different marker is shown in Fig. 6.

Figure 5. The main interface of the Multimedia Conference System

Figure 6. Another main interface of the Multimedia Conference

System

From Fig. 5 and Fig. 6, we can see that the two interfaces
have the same URL but different markers on the top of the
main interface. Thus we know that after the process of the
load balancer, the user’s request was redirected to two
different servers and the Redirecting module worked
correctly.

223

B. Experiment of Log Parsing
The main purpose of this part is to check the real server

IP and verify the process of load balance. Following is the
log format in the nginx.conf.

Figure 7. Log Format in the nginx.conf

After the user login and redirected, we can get the output
of the log in Fig. 8 and Fig. 9.

Figure 8. Log of Nginx Recording Redirecting Information of the First

Login

Figure 9. Log of Nginx Recording Redirecting Information of the

Second Login

The Fig. 8 shows that the login interface and user
authentication is processed by the server whose IP is
10.109.254.107. The client get login interface element and
push check code information to the 10.109.254.107.
However, the main interface is processed by the server of
10.109.254.101.

The Fig. 9 shows that the login interface and user
authentication is processed by the server whose IP is
10.109.254.107. The client get login interface element and
push check code information to the 10.109.254.107.

However, the main interface is processed by the server of
10.109.254.109.

Thus we can see that the load balancer processed the user
authentication while the application servers in the cluster
processed the other functions. This is consistent with
previous framework mentioned in Fig. 2. And we also
verified that the load balancer worked correctly.

VI. CONCLUSION
The Multimedia Conference System has made a great

success and it provides a quick and convenient
communication way, but a single server can’t handle the
high concurrent user requests effectively. In this paper, we
improved the Multimedia Conference System with load
balance technology. We have verified that with the load
balance technology, the robustness and availability of the
system can be enhanced significantly. But as an entrance of
the cluster system, the load balancer may become another
bottleneck. In the future work, we will put a focus on the
entrance of the cluster system.

ACKNOWLEDGMENT
The work presented in this paper is supported by the

National Grand Fundamental Research 973 Program of
China (2011CB302506), the National Key Technology
Research and Development Program of China ”Research on
the mobile community cultural service aggregation
supporting technology” (2012BAH94F02), and the Novel
Mobile Service Control Network Architecture and Key
Technologies (2010ZX03004-001-01). We thank Wang
Shaofeng, Weng Meizhen, Yang Nan and Lei Xiaojiang for
their careful review and good suggestions.

REFERENCES
[1] Zhang Wensong, “The Study and Implementation of Scalable

Network Services,” Oct 2000.
[2] The Apache Tomcat Connector Documentation Index[EB/OL].

http://tomcat.apache.org /.
[3] nginx[EB/OL]. http://nginx.org/en/, 2013.
[4] Reese, Will. "Nginx: the high-performance web server and reverse

proxy."Linux Journal 2008.173 (2008): 2.
[5] Luo Yongjun,Li Xiaole and Sun Ruxiang, “Summarization of the

Load-balancing Algorithm,” Nov 6,2008.
[6] Keslassy, Isaac, et al. "Optimal load-balancing." INFOCOM 2005.

24th Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings IEEE. Vol. 3. IEEE, 2005.

[7] Tian Chunqing, “Using Nginx to Implement Web Load Distribution
Based on URI,”April 16,2009.

[8] Deng Zhongju, “The Design and Implementation of High Reliable
Cluster’s Deploymen,”Dec 25,2012.

[9] Chi, Xiaoni, et al. "Web Load Balance and Cache Optimization
Design Based Nginx under High-Concurrency Environment." Digital
Manufacturing and Automation (ICDMA), 2012 Third International
Conference on. IEEE, 2012.

224

