
A method for designing Hash function based on chaotic neural network

Bo He
1
, Peng Lei

2
, Qin Pu

3
, Zhaolong Liu

2

1
Key laboratory of electronic commerce and logistics, Chongqing University of Posts and Telecommunications, Chongqing,

400065, China
2
College of Computer Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065,

China
3
Chongqing Telecom Planning and Designing Institute Co., Ltd, Chongqing, 40041, China

Abstract—The neural network model has complex nonlinear

behavior, which is very useful to design encryption algorithm

and Hash function. In this paper, an algorithm for

constructing one-way hash function based on chaotic neural

network is proposed. The neural network model is initialized

by two chaotic maps. Then, the message are divided into blocks

with fixed length and inputted to neural network one by one.

The final Hash value is extracted from status value of output

layer cells. Theoretical analysis and computer simulation

indicate that our algorithm has good statistical properties,

strong collision resistance and high flexibility. It is practical

and reliable, with high potential to provide data integrity.

Keywords-Hash function; chaotic neural network;

Cryptography; Information Security

I. INTRODUCTION

With the wide application of internet and computer

technique, information security becomes more and more

important. As we know, hash function is one of the cores of

cryptography and plays an important role in information

security. Hash function takes a message as input and

produces an output referred to as a hash value. A hash value

serves as a compact representative image (sometimes called

digital fingerprint) of input string, and can be used for data

integrity in conjunction with digital signature schemes [1].

Recent investigations on the collision frequencies reveal

many undiscovered flaws in the well-known methods, such

as MD5, SHA1, and RIPEMD [2, 3]. As a result, the

research on designing hash functions with various methods

attracts more and more attentions.

Chaos is a kind of deterministic random-like process

found in nonlinear dynamical systems, which has some

attractive features used to data protection, such as sensitive

to initial value and ergodic. It is becoming a novel direction

in constructing hash functions based on chaos. Based on

Baptista’s encryption method, Wong developed a scheme

combining encryption and hashing [4]. Although it is able to

encrypt messages and generate the corresponding hash value

simultaneously, the efficiency and security of this scheme

need further improvements [5]. Based on the piecewise

linear chaotic map (PWLCM) or tent map, a hash algorithm

with high efficiency is proposed [6]. To prevent attackers

from breaking the hash function by predicting the chaotic

series, complex chaotic systems are employed. A hash

function based 2D coupled map lattices is present [7].

However, as the algorithms based on complex chaotic

systems, its efficiency is not high. In recent years, some

parallel hash functions based on complex dynamic systems

are given [8-10]. But some security problems are found.
In this paper, we proposed a novel method for

constructing hash function with the general iterative structure
shown in Fig.1. The hash round function is designed by a
chaotic neural network system. The chaotic neural network is
sensitive to the input and status values, which guarantees the
hash function owning high security performance. The
remaining of this paper is organized as follows. The
algorithm of hash function is described in section II. The
performance of hash function is analyzed and compared with
that of other algorithms in section III. Finally, conclusions
are drawn in section IV.

Figure 1. General iterative structure of hash function

II. THE SCHEME OF DESIGNING HASH FUNCTION

A. The chaotic neural network system

Compared to the simple chaotic map, chaotic neural
network system has more complex dynamic behavior. When
given the inner structure parameters and the input values, it is
easy to compute output. Moreover, the output values of the
system are sensitivity to the initial conditions and parameters.
The inherent merits of chaotic neural network form the solid
theoretical foundation for excellent Hash function
construction.

The chaotic neural network system used in our scheme is
shown in Fig. 2, which consists of two layers: the input layer
and the out put layer. The input layer has 16 neurons, and
each neuron has 256 input data. The structure parameters of
each input neuron include the weights — WI1,1, WI1,2, ...
WI1,16, WI2,1, WI2,2, ..., WI256,16, the biases — BI1, BI2, ..., BI16
and the transfer function—the logistic map with parameter μ.
The output layer has eight neurons. The structure parameters
of output neurons are the weights of each neuron — WO1,1,
WO1,2, ... WO1,8, WO2,1, WO2,2, ..., WO16,8, the biases—BO1,
BO2, ..., BO8 and the transfer function—the logistic map with
parameter μ.

...
IV=h0

M0 M1

h1 h2

Mn-1

hn-1

hn
H H H

International Workshop on Cloud Computing and Information Security (CCIS 2013)

© 2013. The authors - Published by Atlantis Press 229

Figure 2. The chaotic neural network structure

B. Initialization of chaotic neural network

The 128-bit initial value IV are partitioned into 16 byte-
values IVs. Denote IVs[i], i = 0, 1, 2, ..., 15 as the i

th
 byte

value of IV. The IVs are used to set the initial values and
status values of two chaotic maps shown in Eqs. (1) and (2).
Then, the chaotic neural network is initialized by iterating
these two chaotic maps.

1 (1)n n nx x x   (1)

1

/ 0

(1) /(1) 1

i i

n

i i

x b x b
x

x b b x


 
 

   
 (2)

where [3.57,4] and (0,1)b are the control parameters.

1) Initialization of input weights and output weights.

The process of initializing the weights of each input neuron

and output neuron are described in the followng pseudocode

fragments shown in Fig.3 and Fig.4, respectively.

Figure 3. The pseudocode fragment of initializing input weights

Figure 4. The pseudocode fragment of initializing output weights

2) Initialization of input biases and output biases. The

process of initializing input biases and out weights are

similar and the corresponding pseudocode fragments are

given in Fig.5 and Fig.6, respectively.

Figure 5. The pseudocode fragment of initializing input biases

Figure 6. The pseudocode fragment of initializing output weights

C. The Hash scheme

Step 1. The original message M is padded such that its
length is a multiple of l bits. Without loss of generality, we
set l = 128.

Step 2. The padded message is partitioned into blocks M0,
M1, ..., Mn-1, each has l bits.

Step 3. Set IVs = {0x01, 0x23, 0x45, 0x67, 0x89, 0xab,
0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10}.
Each value in IVs is expressed in hexadecimal format.
According to the rules described in Section B, initialize the
parameters of chaotic neural network system with IVs.

Step 4. The message block M0, M1, ..., Mn-1 are inputted
into the chaotic neural network one by one. Each message
block with 128-bit length is divided into 16 byte values.
Then, the byte values are transformed to float numbers and
used as the input variables of the neural network system.

1) for(i=0; i<8; i++){

2) x = (IVs[2i]+ IVs[2i+0.1])/512;

3) b = (IVs[i]+IVs[i+8]+0.1)/512;

4) iterate Eq.(2) for 50 times;

5) BOi = x;

6) }

1) for(i=0; i<16; i++){

2) x = (IVs[i]+0.1)/256;

3) b = (IVs[i]+IVs[mod(i+1, 16)]+0.1)/512;

4) iterate Eq.(2) for 50 times;

5) BIi = x;

6) }

1) for(i=0; i<16; i++){

2) b = (IVs[i]+0.1)/256;

3) Set x = 0.1234 as the initial value of Eq.(2)

4) Iterate Eq.(2) for 50 times;

5) for(j = 0; j < 8; j++){

6) iterate Eq.(2) only once;

7) WOi, j = x;

8) }

9) }

1) for(i=0; i<16; i++){

2) x = (IVs[i]+0.1)/256

3) Set x as the initial value of Eq.(1)

4) Set μ = 4 and iterate Eq.(1) for 50 times;

5) for(j = 0; j < 16; j++){

6) iterate Eq.(1) only once;

7) WIi, j = x;

8) }

8) }

230

Finally, adjusts the parameters of the neural network system.
The details of processing one message block are described as
below:

(1) Suppose the current message block is Mi and mi,j is
the j

th
 byte value of Mi. mi,j is transformed to the

corresponding float number Ii,j according to Eq. (3).

, ,(0.1) / 256i j i jI m  j = 0, 1, 2, ... , 15

(3)

(2) Calculate the status value of input-layer neuron
according to Eq.(4) and iterate the logistic map for 50 times
to enhance the effect of input variables.

15

, ,

0

() mod1k j j k i j

j

Nin BI WI I


   k =0, 1, 2, ..., 15

(4)

where Nink is the k
th
 status value of neuron. Then, obtain the

status value of output-layer neuron according to Eq. (5) and
also iterate the logistic map for 50 times.

7

,

0

() mod1k j j k k

j

Nout BO WO Nin


   k =0, 1, 2, ..., 7

(5)

where Noutk is the k
th
 status value of output neuron.

(3) Adjust the biases and weights of output layer and the
status value of input-layer neuron according to Eqs. (6), (7),
and (8), respectively.

() / 2k k kBO BO Nout  k =0, 1, 2, ..., 7

(6)

,

,

, , 1

() / 2 if 0

(() / 2) / 2 if 0

i j i

i j

i j i i j

WO Nout j
WO

WO Nout WO j

 
 

  

(7)

1

2 1

1

2

256

(256) 256

(/ 256) / 2, 0,2,4, ,14

(/ 256) / 2, 1,3,5, ,15

i

i

i i

i i

a Nout

a Nout a

Nin Nin a i

Nin Nin a i

    


      


  
   





(8)

Step 5. Transform the final status values of output
neurons to the corresponding binary format and extract 16
bits (1

st
 to 16

th
 bits after the decimal point) from each neuron.

Finally, juxtaposes these bits from left to right to get a 128-
bit hash value.

III. PERFORMANCE ANALYSIS

A. Hash result of messages

We use the proposed algorithm to do hash simulation
under the following five kinds of conditions:

 Condition 1: The original message is “With the wide
application of internet and computer technique, information
security becomes more and more important. As we know,
hash function is one of the cores of cryptography and plays
an important role in information security. Hash function
takes a message as input and produces an output referred to
as a hash value. A hash value serves as a compact
representative image (sometimes called digital fingerprint)
of input string, and can be used for data integrity in
conjunction with digital signature schemes.”

Condition 2: Changes the first Character W in the original
message into X.

Condition 3: Changes the first word with in the original
message into without.

Condition 4: Changes full stop at the end of the original
message into comma.

Condition 5: Adds a blank space to the end of the original
message.

The corresponding hash values in hexadecimal format are:

Condition 1:8C7AFBB127F4ECB412480101205CDF7C

Condition 2:
E7623AB400F1091D0DA7CB9A3E77F29C

Condition 3:
119D14ADC14FA9DE0000FC215CB40B62

Condition 4: 438C986763A713D1C363F5CCF68B784A

Condition 5: 017CFFFEF879D121FFFFFF0C027D40EE

Based on the simulation result, it can be seen that any
least difference of the message will cause huge changes in
the final hash value.

B. Statistic analysis

From the view of binary format, Hash value consists of 1
and 0. So the ideal diffusion effect should be that any tiny
changes in initial conditions lead to the 50% changing
probability of each bit. In general, six statistics are used to
evaluate the performance of Hash function, which are
defined as follows:

Minimum changed bit number:

min 1min({ })N

iB B

(9)

Maximum changed bit number:

 max 1max{ })N

iB B

(10)

Mean changed bit number:
1

1 N

iB B
N



 

(11)

231

Mean changed probability: (/128) 100%P B


 

(12)

Standard variance of the changed bit number:

 2

1

1
()

1

N

i

i

B B B
N





  



(13)

Standard variance:

 2

1

1
(/128) 100%

1

N

i

i

P B P
N 

   



(14)

where N is the total number of test and Bi is the number of
changed bits in the i

th
 test.

We have performed the following test: A paragraph of
message is randomly chosen and hash value is generated.
Then a bit in the message is randomly selected and changed.
The hash value of the changed message is generated. Finally
two Hash values are compared. This kind of test is
performed N times, and the corresponding distribution of
changed bit number is shown as Fig. 7, where N = 2048.

Figure 7. Distribution of changed bit number

Perform the tests with N = 256, 512, 1024, 2048,

respectively, the corresponding data are listed in Table I.
Based on the analysis of the data in Table I, we can draw the

conclusion: the mean changed bit number B


 and the mean
changed probability P are both very close to the ideal value

64 bit and 50%. Δ B and Δ P are very little, which indicates

the statistical property of the Hash function is good and
stable.

Moreover, similar test with MD5 is performed in [1], the
result is shown in Table II. Based on Tables I and II, we can
see that the proposed Hash function has almost the same
performance with MD5.

C. Collision analysis and test

1) Collision analysis. Collision resistance and birthday-

attack are related to each other. Both are originated from the

probability problem that two random input data are found to

hash to the same value. In the proposed algorithm, the

output neuron state is related to each message bit. By

iterations, substantial changes are obtained at the final state

even if there is only a one-bit change in the message.

According to the above analysis, our algorithm is secure

against statistical attacks. For birthday-attack, the security of

the hash function is determined by the length of the hash

value, which is 128-bit in our proposed function. According

to the definition of birthday-attack, the attack difficulty is

2
64

. Due to the advancement in computing power, the

required hash length will continue to increase. By adjusting

the size of neural network or extracting more bits from each

neuron, a longer hash value can be obtained. Therefore, our

hash function can resist this kind of attack.

2) Collision test. We perform the following test to do

quantitative analysis on collision resistance: first, the hash

value for a paragraph of message randomly chosen is

generated and stored in ASCII format. Then a bit in the

message is selected randomly and changed. A new hash

value is then generated and stored in ASCII format, too. The

two hash values are compared and the number of ASCII

character with the same value at the same location in the

hash value is counted. This kind of collision test is

performed 2048 times. The distribution of the number of

ASCII characters with the same value at the same location in

the hash value is given in Fig. 8. Notice that the maximum

number of equal character is only 2 and the collision is very

low.

TABLE II. THE STATISTICAL PERFORMANCE OF MD5

N = 256 512 1024 2048

B


 64.683 64.437 64.205 64.060

P(%) 50.534 50.341 50.160 50.046

Δ B 5.521 5.731 5.698 5.618

Δ P(%) 4.314 4.477 4.451 4.439

Bmin 52 48 47 46

Bmax 80 82 82 83

TABLE I. THE STATISTICAL PERFORMANCE OF POPROSED HASH

FUNCTION

N = 256 512 1024 2048

B


 64.013 63.841 63.947 64.031

P(%) 50.010 49.876 49.959 50.024

Δ B 5.545 5.629 5.673 5.608

Δ P(%) 4.301 4.411 4.417 4.406

Bmin 50 49 46 45

Bmax 79 81 82 83

232

Figure 8. Distribution of the number of ASCII characters with the same

value at the same location in the Hash value

Meanwhile the same tests are done with MD5. To the

convenience of comparison, the distribution of the number

of ASCII character with the smae value at the same location

in the hash value is also shown Fig. 8. Obviously, the

smaller the maximum number of equal characters is, the

stronger the collision resistance is. Thus, our hash function

has the same strong collision resistance as that of MD5.

3) Absolute difference. According Wong's method [4],

the absolute difference of two hash values is calculated by

using the following formula:

 '

1

() ()
N

i i

i

d t e t e


  (9)

where
ie and '

ie are the i
th
 ASCII character of the original

and the new hash value, respectively. The function t()
converts the entries to their equivalent decimal values. We
calculate the maximum, mean, minimum values of d in the
above 2048 times collision test. The results are listed in
Table III. Meanwhile the same tests are done with MD5 and
the results are also listed in Table III. It can be seen that the
mean absolute difference of our Hash function is bigger than
that of MD5. Hence our algorithm possesses a stronger
collision resistance than MD5.

IV. CONCLUSION

In this paper, a hash function based on chaotic neural
network is proposed, which uses the general iterative
structure of Hash function. The hash round function is
constructed by a chaotic neural network. The chaotic neural
network owns complex dynamic behavior. Since the output
feedback model is employed, its output not only depends on
the input and parameters of the neural network, but also its
status. This dependence is enhanced by iterating the chaotic
map, which is very useful to improve the performance of
Hash function. Theory analysis and simulation tests show
that the proposed algorithm fulfills the performance

requirements of hash function. It is simple, efficient,
practicable, and reliable. It is a good candidate for data
integrity

ACKNOWLEDGEMENTS

The work described in this paper was supported by the

National Natural Science Foundation of China (No.

61003256), the Postdoctoral Science Foundation of China

(20110490082), the Foundation of Chongqing Education

Committee (No KJ120506), the Natural Science Foundation

of CQUPT (A2011-20) , and the Foundation of Chongqing

Key Laboratory of Electronic Commerce and Logistics (No.

ECML1007)

REFERENCES

[1] A. Menezes, P. van Oorschot, S. Vanstone, Handbook of applied
cryptography, CRC Press, 1996.

[2] X. Wang, X. Lai, D. Feng, et al., Cryptanalysis of the Hash functions
MD4 and RIPEMD, in: Proceedings of Eurocrypt ’ 05, Aarhus,
Denmark, 2005, pp. 1–18.

[3] X. Wang, H. Yu, How to break MD5 and other hash functions, in:
Proceedings of Eurocrypt’05, Aarhus, Denmark, 2005, pp. 19–35.

[4] K. Wong, A combined chaotic cryptographic and hashing scheme,
Physics Letters A 307 (2003) 292–298.

[5] G. Alvarez, F.Montoya, M. Romera, G. Pastor, Cryptanalysis of
dynamic look-up table based chaotic cryptosystems, Physics Letters
A 326 (2004) 211–218.

[6] X. Yi, Hash function based on chaotic tent maps, IEEE Transactions
on Circuits and Systems II 52 (6) (2005) 354–357.

[7] Yong Wang, Xiaofeng Liao, Di Xiao, Kwok-Wo Wong. One-way
hash function construction based on 2D coupled map lattices,
Information Sciences. 2008 (178):1391-1406

[8] Di Xiao, Xiaofeng Liao, Yong Wang. Parallel keyed hash function
construction based on chaotic neural network. Neurocomputing,
Volume 72, Issues 10-12, June 2009, Pages 2288-2296.

[9] Di Xiao, Xiaofeng Liao, Yong Wang. Improving the security of a
parallel keyed hash function based on chaotic maps. Physics Letters A.
373 (2009) 4346–4353.

[10] Yong Wang, Kwok-Wo Wong, Di Xiao. Parallel hash function
construction based on coupled map lattices. Communications in
Nonlinear Science and Numerical Simulation. 2011 (16) : 2810-2821.

TABLE III ABSOLUTE DIFFERENCE OF OUR SCHEME AND MD5

Absolute difference maximum minimum mean

Our scheme 2312 683 1504

MD5 2235 595 1390

233

