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Abstract—The neural network model has complex nonlinear 

behavior, which is very useful to design encryption algorithm 

and Hash function. In this paper, an algorithm for 

constructing one-way hash function based on chaotic neural 

network is proposed. The neural network model is initialized 

by two chaotic maps. Then, the message are divided into blocks 

with fixed length and inputted to neural network one by one. 

The final Hash value is extracted from status value of output 

layer cells. Theoretical analysis and computer simulation 

indicate that our algorithm has good statistical properties, 

strong collision resistance and high flexibility. It is practical 

and reliable, with high potential to provide data integrity. 

Keywords-Hash function; chaotic neural network; 

Cryptography; Information Security 

I.  INTRODUCTION  

With the wide application of internet and computer 

technique, information security becomes more and more 

important. As we know, hash function is one of the cores of 

cryptography and plays an important role in information 

security. Hash function takes a message as input and 

produces an output referred to as a hash value. A hash value 

serves as a compact representative image (sometimes called 

digital fingerprint) of input string, and can be used for data 

integrity in conjunction with digital signature schemes [1]. 

Recent investigations on the collision frequencies reveal 

many undiscovered flaws in the well-known methods, such 

as MD5, SHA1, and RIPEMD [2, 3]. As a result, the 

research on designing hash functions with various methods 

attracts more and more attentions. 

Chaos is a kind of deterministic random-like process 

found in nonlinear dynamical systems, which has some 

attractive features used to data protection, such as sensitive 

to initial value and ergodic. It is becoming a novel direction 

in constructing hash functions based on chaos. Based on 

Baptista’s encryption method, Wong developed a scheme 

combining encryption and hashing [4]. Although it is able to 

encrypt messages and generate the corresponding hash value 

simultaneously, the efficiency and security of this scheme 

need further improvements [5]. Based on the piecewise 

linear chaotic map (PWLCM) or tent map, a hash algorithm 

with high efficiency is proposed [6]. To prevent attackers 

from breaking the hash function by predicting the chaotic 

series, complex chaotic systems are employed. A hash 

function based 2D coupled map lattices is present [7]. 

However, as the algorithms based on complex chaotic 

systems, its efficiency is not high. In recent years, some 

parallel hash functions based on complex dynamic systems 

are given [8-10]. But some security problems are found.  
In this paper, we proposed a novel method for 

constructing hash function with the general iterative structure 
shown in Fig.1. The hash round function is designed by a 
chaotic neural network system. The chaotic neural network is 
sensitive to the input and status values, which guarantees the 
hash function owning high security performance. The 
remaining of this paper is organized as follows. The 
algorithm of hash function is described in section II. The 
performance of hash function is analyzed and compared with 
that of other algorithms in section III. Finally, conclusions 
are drawn in section IV. 

 

 

Figure 1.  General iterative structure of hash function 

II. THE SCHEME OF DESIGNING HASH FUNCTION 

A. The chaotic neural network system 

Compared to the simple chaotic map, chaotic neural 
network system has more complex dynamic behavior. When 
given the inner structure parameters and the input values, it is 
easy to compute output. Moreover, the output values of the 
system are sensitivity to the initial conditions and parameters. 
The inherent merits of chaotic neural network form the solid 
theoretical foundation for excellent Hash function 
construction. 

The chaotic neural network system used in our scheme is 
shown in Fig. 2, which consists of two layers: the input layer 
and the out put layer. The input layer has 16 neurons, and 
each neuron has 256 input data. The structure parameters of 
each input neuron include the weights — WI1,1, WI1,2, ... 
WI1,16, WI2,1, WI2,2, ..., WI256,16, the biases — BI1, BI2, ..., BI16 
and the transfer function—the logistic map with parameter μ. 
The output layer has eight neurons. The structure parameters 
of output neurons are the weights of each neuron — WO1,1, 
WO1,2, ... WO1,8, WO2,1, WO2,2, ..., WO16,8, the biases—BO1, 
BO2, ..., BO8 and the transfer function—the logistic map with 
parameter μ. 
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Figure 2.  The chaotic neural network structure 

B. Initialization of  chaotic neural network 

The 128-bit initial value IV are partitioned into 16 byte-
values IVs. Denote IVs[i], i = 0, 1, 2, ..., 15 as the i

th
 byte 

value of IV. The IVs are used to set the initial values and 
status values of two chaotic maps shown in Eqs. (1) and (2). 
Then, the chaotic neural network is initialized by iterating 
these two chaotic maps. 
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where [3.57,4] and (0,1)b are the control parameters. 

1) Initialization of input weights and output weights. 

The process of initializing the weights of each input neuron 

and output neuron are described in the followng pseudocode 

fragments shown in Fig.3 and Fig.4, respectively. 

 

Figure 3.  The pseudocode fragment of initializing input weights 

 

Figure 4.  The pseudocode fragment of initializing output weights 

2) Initialization of input biases and output biases. The 

process of initializing input biases and out weights are 

similar and the corresponding pseudocode fragments are 

given in Fig.5 and Fig.6, respectively. 

 

 

Figure 5.  The pseudocode fragment of initializing input biases 

 

Figure 6.  The pseudocode fragment of initializing output weights 

C. The Hash scheme 

Step 1. The original message M is padded such that its 
length is a multiple of l bits. Without loss of generality, we 
set l = 128.  

Step 2. The padded message is partitioned into blocks M0, 
M1, ..., Mn-1, each has l bits.  

Step 3. Set IVs = {0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 
0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10}. 
Each value in IVs is expressed in hexadecimal format. 
According to the rules described in Section B, initialize the 
parameters of chaotic neural network system with IVs. 

Step 4. The message block M0, M1, ..., Mn-1 are inputted 
into the chaotic neural network one by one. Each message 
block with 128-bit length is divided into 16 byte values. 
Then, the byte values are transformed to float numbers and 
used as the input variables of the neural network system. 

1)   for(i=0; i<8; i++){ 

2)        x = (IVs[2i]+ IVs[2i+0.1])/512; 

3)        b = (IVs[i]+IVs[i+8]+0.1)/512; 

4)       iterate Eq.(2) for 50 times; 

5)        BOi = x; 

6)   } 

1)   for(i=0; i<16; i++){ 

2)        x = (IVs[i]+0.1)/256; 

3)        b = (IVs[i]+IVs[mod(i+1, 16)]+0.1)/512; 

4)       iterate Eq.(2) for 50 times; 

5)        BIi = x; 

6)   } 

1)   for(i=0; i<16; i++){ 

2)       b = (IVs[i]+0.1)/256; 

3)      Set x = 0.1234 as the initial value of Eq.(2) 

4)      Iterate Eq.(2) for 50 times;  

5)      for(j = 0; j < 8; j++){   

6)          iterate Eq.(2) only once; 

7)          WOi, j = x; 

8)       } 

9)   } 

1)   for(i=0; i<16; i++){ 

2)       x = (IVs[i]+0.1)/256  

3)       Set x as the initial value of Eq.(1) 

4)       Set μ = 4 and iterate Eq.(1) for 50 times;  

5)       for(j = 0; j < 16; j++){   

6)             iterate Eq.(1) only once; 

7)     WIi, j = x; 

8)        } 

8) } 
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Finally, adjusts the parameters of the neural network system. 
The details of processing one message block are described as 
below: 

(1) Suppose the current message block is Mi and mi,j is 
the j

th
 byte value of Mi. mi,j is transformed to the 

corresponding float number Ii,j according to Eq. (3). 

, ,( 0.1) / 256i j i jI m           j = 0, 1, 2, ... , 15                    

(3) 

(2) Calculate the status value of input-layer neuron 
according to Eq.(4) and iterate the logistic map for 50 times 
to enhance the effect of input variables. 
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where Nink is the k
th
 status value of neuron. Then, obtain the 

status value of output-layer neuron according to Eq. (5) and 
also iterate the logistic map for 50 times. 
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where Noutk is the k
th
 status value of output neuron. 

(3) Adjust the biases and weights of output layer and the 
status value of input-layer neuron according to Eqs. (6), (7), 
and (8), respectively. 
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Step 5. Transform the final status values of output 
neurons to the corresponding binary format and extract 16 
bits (1

st
 to 16

th
 bits after the decimal point ) from each neuron. 

Finally, juxtaposes these bits from left to right to get a 128-
bit hash value. 

III. PERFORMANCE ANALYSIS  

A. Hash result of messages  

We use the proposed algorithm to do hash simulation 
under the following five kinds of conditions: 

      Condition 1: The original message is “With the wide 
application of internet and computer technique, information 
security becomes more and more important. As we know, 
hash function is one of the cores of cryptography and plays 
an important role in information security. Hash function 
takes a message as input and produces an output referred to 
as a hash value. A hash value serves as a compact 
representative image (sometimes called digital fingerprint) 
of input string, and can be used for data integrity in 
conjunction with digital signature schemes.” 

Condition 2: Changes the first Character W in the original 
message into X. 

Condition 3: Changes the first word with in the original 
message into without. 

Condition 4: Changes full stop at the end of the original 
message into comma. 

Condition 5: Adds a blank space to the end of the original 
message. 

The corresponding hash values in hexadecimal format are: 

Condition 1:8C7AFBB127F4ECB412480101205CDF7C 

Condition 2: 
E7623AB400F1091D0DA7CB9A3E77F29C 

Condition 3: 
119D14ADC14FA9DE0000FC215CB40B62 

Condition 4: 438C986763A713D1C363F5CCF68B784A 

Condition 5: 017CFFFEF879D121FFFFFF0C027D40EE 

Based on the simulation result, it can be seen that any 
least difference of the message will cause huge changes in 
the final hash value. 

B. Statistic analysis 

From the view of binary format, Hash value consists of 1 
and 0. So the ideal diffusion effect should be that any tiny 
changes in initial conditions lead to the 50% changing 
probability of each bit. In general, six statistics are used to 
evaluate the performance of Hash function, which are 
defined as follows: 

Minimum changed bit number: 

               
min 1min({ } )N

iB B                                                

(9) 

Maximum changed bit number:  

               max 1max{ } )N

iB B                                              

(10) 

Mean changed bit number:  
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Mean changed probability: ( /128) 100%P B

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(12) 

Standard variance of the changed bit number:  
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Standard variance:  
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where N is the total number of test and Bi is the number of 
changed bits in the i

th
 test. 

We have performed the following test: A paragraph of 
message is randomly chosen and hash value is generated. 
Then a bit in the message is randomly selected and changed. 
The hash value of the changed message is generated. Finally 
two Hash values are compared. This kind of test is 
performed N times, and the corresponding distribution of 
changed bit number is shown as Fig. 7, where N = 2048. 

 

 

Figure 7.  Distribution of changed bit number 

 
Perform the tests with N = 256, 512, 1024, 2048, 

respectively, the corresponding data are listed in Table I. 
Based on the analysis of the data in Table I, we can draw the 

conclusion: the mean changed bit number B


 and the mean 
changed probability P are both very close to the ideal value 

64 bit and 50%. Δ B and Δ P are very little, which indicates 

the statistical property of the Hash function is good and 
stable. 

Moreover, similar test with MD5 is performed in [1], the 
result is shown in Table II. Based on Tables I and II, we can 
see that the proposed Hash function has almost the same 
performance with MD5. 

 
 

C. Collision analysis and test 

1) Collision analysis. Collision resistance and birthday-

attack are related to each other. Both are originated from the 

probability problem that two random input data are found to 

hash to the same value. In the proposed algorithm, the 

output neuron state is related to each message bit. By 

iterations, substantial changes are obtained at the final state 

even if there is only a one-bit change in the message. 

According to the above analysis, our algorithm is secure 

against statistical attacks. For birthday-attack, the security of 

the hash function is determined by the length of the hash 

value, which is 128-bit in our proposed function. According 

to the definition of birthday-attack, the attack difficulty is 

2
64

. Due to the advancement in computing power, the 

required hash length will continue to increase. By adjusting 

the size of neural network or extracting more bits from each 

neuron, a longer hash value can be obtained. Therefore, our 

hash function can resist this kind of attack. 

2) Collision test. We perform the following test to do 

quantitative analysis on collision resistance: first, the hash 

value for a paragraph of message randomly chosen is 

generated and stored in ASCII format. Then a bit in the 

message is selected randomly and changed. A new hash 

value is then generated and stored in ASCII format, too. The 

two hash values are compared and the number of ASCII 

character with the same value at the same location in the 

hash value is counted. This kind of collision test is 

performed 2048 times. The distribution of the number of 

ASCII characters with the same value at the same location in 

the hash value is given in Fig. 8. Notice that the maximum 

number of equal character is only 2 and the collision is very 

low.  

TABLE II.  THE STATISTICAL PERFORMANCE OF MD5 

N = 256 512 1024  2048 

B


 64.683 64.437 64.205 64.060 

P(%) 50.534 50.341 50.160 50.046 

Δ B 5.521 5.731 5.698 5.618 

Δ P(%) 4.314 4.477 4.451 4.439 

Bmin 52 48 47 46 

Bmax 80 82 82 83 

 

TABLE I.  THE STATISTICAL PERFORMANCE OF POPROSED HASH 

FUNCTION 

N = 256 512 1024  2048 

B


 64.013 63.841 63.947 64.031 

P(%) 50.010 49.876 49.959 50.024 

Δ B 5.545 5.629 5.673 5.608 

Δ P(%) 4.301 4.411 4.417 4.406 

Bmin 50 49 46 45 

Bmax 79 81 82 83 
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Figure 8.  Distribution of the number of ASCII characters with the same 

value at the same location in the Hash value 

Meanwhile the same tests are done with MD5. To the 

convenience of comparison, the distribution of the number 

of ASCII character with the smae value at the same location 

in the hash value is also shown Fig. 8.  Obviously, the 

smaller the maximum number of equal characters is, the 

stronger the collision resistance is. Thus, our hash function 

has the same strong collision resistance as that of MD5. 

3) Absolute difference. According Wong's method [4], 

the absolute difference of two hash values is calculated by 

using the following formula:  

               '

1

( ) ( )
N

i i

i

d t e t e


                                            (9) 

where 
ie  and '

ie  are the i
th
 ASCII character of the original 

and the new hash value, respectively. The function t( ) 
converts the entries to their equivalent decimal values. We 
calculate the maximum, mean, minimum values of d in the 
above 2048 times collision test. The results are listed in 
Table III. Meanwhile the same tests are done with MD5 and 
the results are also listed in Table III. It can be seen that the 
mean absolute difference of our Hash function is bigger than 
that of MD5. Hence our algorithm possesses a stronger 
collision resistance than MD5. 

 

IV. CONCLUSION 

In this paper, a hash function based on chaotic neural 
network is proposed, which uses the general iterative 
structure of Hash function. The hash round function is 
constructed by a chaotic neural network. The chaotic neural 
network owns complex dynamic behavior. Since the output 
feedback model is employed, its output not only depends on 
the input and parameters of the neural network, but also its 
status. This dependence is enhanced by iterating the chaotic 
map, which is very useful to improve the performance of 
Hash function. Theory analysis and simulation tests show 
that the proposed algorithm fulfills the performance 

requirements of hash function. It is simple, efficient, 
practicable, and reliable. It is a good candidate for data 
integrity 
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Absolute difference maximum minimum mean 

Our scheme 2312 683 1504 
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