
The Study of Improved FP-Growth Algorithm in MapReduce

Hong SUN

University of Shanghai for Science and Technology

Shanghai Key Lab of Modern Optical System

Shanghai, China

e-mail: sunhong_sh@sohu.com

Huaxuan Zhang

University of Shanghai for Science and Technology

Shanghai Key Lab of Modern Optical System

Shanghai, China

e-mail: 963422575@qq.com

Shiping Chen

University of Shanghai for Science and Technology

Shanghai, China

e-mail: chensp@usst.edu.cn

Chunyan Hu

University of Shanghai for Science and Technology

Shanghai, China

e-mail: hhuchy@163.com

Abstract—As FP-Growth algorithm generates a great deal of

conditional pattern bases and conditional pattern trees, leading

to low efficiency, propose an improved FP-Growth(IFP)

algorithm which firstly combine the same patterns based on

the situation whether the support of the transaction is greater

than the minimum support(min_sup) to mine the frequent

patterns. Thus the IFP cuts down on the space and improves

the efficiency. It also makes it easy to be paralleled. Further

more, combine the IFP algorithm with the MapReduce

computing model, named MR-IFP(MapReduce-Improved FP),

to improve the capability to deal with the mass data.

Keywords: FP-Growth, IFP algorithm, MapReduce

Introduction (Heading 1)

I. INTRODUCTION

Association Rules is a key problem in data mining.
Agrawal with his partners firstly proposed association rules
between item-sets in clients’ transaction database in 1993.
Then much work about association rules mining have been
done[1]. Agrawal et. al. presented the most classic Boolean
algorithm called Apriori [2] .This algorithm retrieves all the
frequent item sets whose support is no less than the
minimum support(min_sup) in database of transaction sets
through iteration. The min_sup is set by the client in advance.
Then the K-itemsets generate the (k+1)-itemsets, and those
whose support are less than the min_sup will be pruned at
the same time. The work has been done when the (k+1)-
itemsets is null. However the Apriori algorithm will produce
a large number of candidates while computing, and it scans
the database for so many times as to reduce the efficiency.
Concerning this issue, Jiawei Han put forward the FP-
Growth algorithm. This algorithm scans the database for
only twice, saving much time and space. But as the database
is growing at an increasingly speed, the classic FP-Growth
produces a great deal of conditional pattern bases and
conditional pattern trees that the memory could not meet the
need and it still costs time. As a result, paralleling the FP-
Growth and promoting the efficiency became two leading
ways in association rule mining. [3] proposes an improved

FP-Growth algorithm that combines the sub-tree with same
patterns. It uses depth-first method and doesn’t need generate
so many pattern trees. While it saves space and speeds up the
computing, its top-down merging and mining with regulation
strategy again lower the speed. This paper makes a further
improvement and uses the MapReduce programming model,
proposing the Improved FP-Growth algorithm in
MapReduce, MR-IFP algorithm. The contributions of this
paper include not only the efficiency promotion and memory
saving , but also its capability dealing with mass data.

II. FP-GROWTH ALGORITHM

The basic idea of FP-Growth algorithm is taking
advantage of the tree to condense the transaction, and remain
the relationship between the property of the transaction in the
same time. This algorithm will not generate an itemset of
candidates, and mined the date by increasing the frequent
itemset[4,5]. The important step of FP-Growth algorithm is
the process to construct the FG tree, which needs to scan the
transaction itemset twice: scan the database of transaction T
once to find out the frequent 1-itemset L, then arrange the
support count in descending order to get the L_NULL;take
the “Null” as the root node when scan the transaction itemset
for the second time, then construct the FP-tree base on
L_NULL.

Here is an example to show how to construct FP-tree.
Transaction itemset is shown in Table 1, define
min_sup=20%, meaning that the minimum support is 2:

TABLE I. TRANSACTION ITEMSET T

Tid Items

1 I1,I2,I5

2 I2,I4

3 I2,I3

4 I1,I2,I4

5 I1,I3

6 I2,I3

7 I1,I3

8 I1,I2,I3,I5

9 I1,I2,I3

International Workshop on Cloud Computing and Information Security (CCIS 2013)

© 2013. The authors - Published by Atlantis Press 250

1) Scan the transaction itemset T, find out items whose
support can meet the condition, combine those itemsets to
get the frequent 1-itemset L, then arrange L in descending
order base on the support count to get L_NULL as shown in
Table 2:

TABLE II. L_NULL

Item-name Support-counts

I2 7

I1 6

I3 6

I4 2

I5 2

2) Construct the original FP-tree and take the “Null” as
the root node.

3) Every row in the L_Null stands for a frequent itemset,
point the corresponding pointer to it’s node in the FP-tree.

4) Traverse the transaction itemset T, adjust the sequence
of all the itemset in T according to L_null, shown in Table 3:

TABLE III. ADJUSTED TRANSACTION ITEMSET T

Tid Items

1 I2,I1,I5

2 I2,I4

3 I2,I3

4 I2,I1,I4

5 I1,I3

6 I2,I3

7 I1,I3

8 I2,I1,I3,I5

9 I2,I1,I3

Build a branch for each transaction in Table 3. Share the
path if the path of branch can be shared, and record the
number of shared transaction in each node. The constructed
FP-tree is shown in Fig.1:

Figure 1. FP-tree

The next step is mining the frequent itemsets from the
FP-tree after constructing the original FP-tree. The steps are
as follows:

 1) Produce conditional pattern base for every node in the
FP-tree;

 2) Build the corresponding conditional FP-tree by the
conditional pattern base;

 3) Mine the conditional FP-tree recursively and increase
the frequent itemset belong to it in the same time: produce
the involved frequent itemset immediately if the conditional
FP-tree only contain one path. Otherwise increase the , (is
the suffix pattern and Ei is the last item of L_null, the
minimum item of support count). Then construct the
conditional pattern base and conditional FP-tree (The
conditional pattern base is all the branch which take Ei as
their leaf node in FP-tree. The conditional FP-tree of is a new
FP-subtree taking the conditional pattern base as it’s
transaction and constructed in the same way of the original
FP-tree).

 The thus obtained conditional pattern base and
frequent itemset are shown in Table 4:

TABLE IV. CONDITIONAL PATTERN BASE AND FREQUENT ITEMSET

item conditional pattern base frequent itemset

I5 <I2,I1:1>，<I2,I1,I3:1> <I2,I5:2>,<I1,I5:2>,<I2,I1,I5:2>

I4 <I2,I1:1>,<I2:1> <I2,I4:2>

I3 <I2,I1:2>,<I2:2>,<I1:2> <I2,I3:4>,<I1,I3:4>,<I2,I1,I3:2>

I1 <I2:4> <I2,I1:4>

Unlike the Apriori algorithm,FP-Growth won’t scan the
database for many times and produce lots of candidate
itemsets. FP-tree can save all the information used to mine
the frequent itemset, long pattern belong to each transaction
won’t be cut off, the higher a item’s frequent is the easier it
can be shared, the number of node contained in tree will not
more than the data of semi-intoxicated item in the database.
But FP-Growth algorithm will produce large number of
conditional pattern tree recursively in mining frequent
pattern. It needs too large memory to apply in broad-scale
database.

III. IMPROVED FP-GROWTH ALGORITHM

A. Items-constraint frequent pattern mining algorithm,

ICFP-Mine[3]

The FP-Growth algorithm, based on FP-Tree, is unable to
distinguish whether one pattern is frequent while mining
each sub-tree as the same patterns might scatter in different
trees. As a result, the algorithm has to create a large number
of conditional pattern trees and conditional pattern bases
recursively in the process of mining the frequent patterns. [3]
proposes an items-constraint frequent pattern mining
algorithm, ICFP-Mine. It combines the same patterns in one
tree, making it direct to judge whether the sub-tree is
frequent. There is no need to build frequent pattern tree. The
next step is to mine the frequent itemsets using the depth-
first method and mining with regulation strategy.

The ICFP-Mine is superior to the traditional FP-Growth
in memory occupancy and time costs. But its top-down
merging and mining with regulation strategy limit its
computing speed. The premise items-constraint is not
pervasive. This paper uses the idea of combining and makes
a further improvement.

B. Improve FP-Growth Algorithm

Improved FP-Growth algorithm: use the bottom-up
merging firstly, and then depth-first mining.

251

Before merging, we focus on the leaf nodes whose
support are less than the min_sup: If the father nodes or
brothers of father nodes have the same pattern with the leaf
nodes, combine them and then prune these leaf nodes; If
there is not, just prune the leaf nodes. Next we focus on other
leaf nodes(support is no less than the min_sup), the operation
is merging the leaf nodes with the fathers’ or brothers’ of
fathers’(have same pattern). We keep these leaf nodes
instead of pruning them.

We use the same example to illustrate the progress. The
FP-Tree is as Fig.1 shown. The Null node has two leaf
nodes:I2, I1. We deal with these two sub-trees respectively
for further paralleling computing.

For I2 sub-tree, consider the leaf nodes with support less
than min_sup. Follow the bottom-up principle, start with the
farthest leaf node I5. The support of I5 is less than min_sup,
joint it with the upper level nodes whose name is also I5(the
same pattern). Among three branches of <I2,I1>, the support
of I4 is less than the min_sup, then joint it with the upper I4.
After that, prune the leaf nodes I5 and I4 at the bottom level,
as shown in Fig.2(a).

Now we can focus on the leaf nodes that has support
greater or equal to the min_sup on the basis of Fig.2(a). At
this bottom there are two nodes I3 and I5. We joint these two
leaf nodes with upper I3 and I5, and keep them instead of
pruning them, as shown in Fig.2(b).

(a) Processing of leaf nodes with support less than min_sup in I2 sub-tree

(b) Processing of leaf nodes with support less than min_sup in I2 sub-tree

Figure 2. IFP-Tree Mining

After combination, mine the frequent itemsets and depth
first. We can get the result directly from the Fig.2(b). Follow

the depth-first principle: {<I1,I3:2> ， < I1,I5:2> ，
<I2,I1,I3:2> ， <I2,I1,I5:2> ， <I2 ， I1:4> ， <I2,I3:4> ，
<I2,I4:2>，<I2,I5:2>}.

The same operation with I1 sub-tree. Get the frequent
itemsets: {<I1,I3:2>}.

Finally joint these two itemsets. Combine those items

having same prefix path: {<I1,I3:4> ， < I1,I5:2> ，
<I2,I1,I3:2> ， <I2,I1,I5:2> ， <I2,I1:4> ， <I2,I3:4> ，
<I2,I4:2>，<I2,I5:2>}. The result is in accordance with the

one in Table 4.
IFP algorithm adopts the bottom-up method to combine

the same pattern and depth-first strategy to mine frequent
itemsets. It is less complex and much faster than ICFP-Mine.
It produces less intermediate results and needs less memory.
As it is not items-constraint, the algorithm is more applicable.
If there is a demand of constraint, just add it before pattern
merging.

IV. IFP-ALGORITHM IN MAPREDUCE

Although IFP has advantages over other traditional FP-
Growth algorithm, dealing with mass data with TB or larger
size is still inefficient. The solution is to parallel the
computing to several nodes. Cloud computing is born with
the ability of handling large-scale data and computing. So
deploying the improved FP-Growth algorithm to the cloud
platform is a promising way to solve the problem[6].And
MapReduce is widely adopted by the cloud computing as a
programming mode. Working the improved FP-Growth
algorithm with the MapReduce, the steps are as followed:

1) Calculate the frequency of the transaction database
via one MapReduce task. FP-Growth algorithm has to scan
the database once before building the tree. Generate the item
header table based on the calculation in a descending
order[9]. Then complete a FP-Tree.

2) Master node splits the FP-Tree to several pieces. As
the example shown in Fig.1, Master should split the FP-Tree
into two pieces as I2 sub-tree and I1 sub-tree, send them to
two slave nodes for mining using IFP algorithm.

3) Two salve nodes send the result back to the Master.
The Master combines these two frequent itemsets as the part
3.2 introduced.

As for other FP-Trees, the Null node may have many
child nodes, just split them into appropriate pieces to relevant
slave nodes. In actual mining, the FP-Tree may be too large
that after splitting the sub-tree is still large for one node to
compute. So we can go on splitting until meet the demand of
memory and speed. Then send them back to upper nodes to
gather and get the final result[5].

V. CONCLUSION AND PERSPECTIVE

This paper makes an optimization of traditional FP-
Growth, named IFP(Improved Frequent Pattern) algorithm.
This algorithm joints the same patterns based on the situation
whether its support is less than the min_sup after building the
FP-Tree. It uses the depth-first method mining the frequent
itemsets and saves a great deal of space. It improves the
efficiency considerably and is easy to parallel. Further more,
the work that combines the improved FP-Growth algorithm
with MapReduce programming model implements
parallelization, greatly improves its capability dealing with

252

mass data. The next step is to conduct experiments on
Hadoop and take the redundant situation into consideration.

ACKNOWLEDGMENT

The National Natural Science Foundation of
China(61170277).

Supported by Innovation Program of Shanghai Municipal
Education Commission(12zz137).

Top Discipline Construction Projects of
Shanghai(S1201YLXK).

The Innovation Project of Shanghai Graduate
Education(No.SHGEUSST1301

REFERENCES

[1] Cai Weijie, Zhang Xiaohui, Zhu Jianqiu, Zhu Yangyong. Survey of
association rule generation [J]. Computer Engineering，2001, 27
（5）：31-33

[2] Wei Zhang, Hongzhi Liao, Na Zhao.Research on the FP-Growth
algorithm about Association Rule Mining[C] //International Seminar
on Business and Information Management,2008:315-318

[3] Zhao Xiaomin, He Songhua, Li Xianpeng, Yin Bo. Improved FP-
Growth algorithm and its applications in the business
association[J].Computer Applications，2008,28（9）：2341-2348

[4] Yang Yun, Luo Yanxia. Improved algorithm based on FP-
Growth[J].Computer Engineering and Design ， 2010,31（ 7）：
1506-1509

[5] Tan Kelin, Sun Zhihui. An Algorithm of Mining FP-tree in Parallel
[J].Computer Engineering and Applications，2006,13:155-157

[6] Zhu Xiaofeng, Li Linjuan, Xu Xiaolong, Chen Jianxin. MapReduce
Based Association Rule Incremental Updating Algorithm
[J].Computer Technology and Development，2012,22（4）：115-
118

[7] Liu Peng. Cloud Computing［M］ .Beijing: Publishing House of
Electronics Industry，2010．

[8] Ding Linlin, Xin Junchang, Wang Guoren, Huang Shan. Efficient
Skyline Query Processing of Massive Data Based on Map-Reduce
[J].Chinese Journal of computers，2011,34（10）：1785-1796

[9] Lv Xueji, Li Longshu. Research on Improved FP-Growth Algorithm
with MapReduce[J]. Computer Technology and Development, 2012,
22(11):123-126

253

