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Abstract—As FP-Growth algorithm generates a great deal of 

conditional pattern bases and conditional pattern trees, leading 

to low efficiency, propose an improved FP-Growth(IFP) 

algorithm which firstly combine the same patterns based on 

the situation whether the support of the transaction is greater 

than the minimum support(min_sup) to mine the frequent 

patterns. Thus the IFP cuts down on the space and improves 

the efficiency. It also makes it easy to be paralleled. Further 

more, combine the IFP algorithm with the MapReduce 

computing model, named MR-IFP(MapReduce-Improved FP), 

to improve the capability to deal with the mass data. 
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Introduction (Heading 1) 

I. INTRODUCTION 

Association Rules is a key problem in data mining. 
Agrawal with his partners firstly proposed association rules 
between item-sets in clients’ transaction database in 1993. 
Then much work about association rules mining have been 
done[1]. Agrawal et. al.  presented the  most classic Boolean 
algorithm called Apriori [2] .This algorithm retrieves all the 
frequent item sets whose support is no less than the 
minimum support(min_sup) in database of transaction sets 
through iteration. The min_sup is set by the client in advance. 
Then the K-itemsets generate the (k+1)-itemsets, and those 
whose support are less than the min_sup will be pruned at 
the same time. The work has been done when the (k+1)-
itemsets is null. However the Apriori algorithm will produce 
a large number of candidates while computing, and it scans 
the database for so many times as to reduce the efficiency. 
Concerning this issue, Jiawei Han put forward the FP-
Growth algorithm. This algorithm scans the database for 
only twice, saving much time and space. But as the database 
is growing at an increasingly speed, the classic FP-Growth 
produces a great deal of conditional pattern bases and 
conditional pattern trees that the memory could not meet the 
need and it still costs time. As a result, paralleling the FP-
Growth and promoting the efficiency became two leading 
ways in association rule mining. [3] proposes an improved 

FP-Growth algorithm that combines the sub-tree with same 
patterns. It uses depth-first method and doesn’t need generate 
so many pattern trees. While it saves space and speeds up the 
computing, its top-down merging and mining with regulation 
strategy again lower the speed. This paper makes a further 
improvement and uses the MapReduce programming model, 
proposing the Improved FP-Growth algorithm in 
MapReduce, MR-IFP algorithm. The contributions of this 
paper include not only the efficiency promotion and memory 
saving , but also its capability dealing with mass data. 

II. FP-GROWTH ALGORITHM 

The basic idea of FP-Growth algorithm is taking 
advantage of the tree to condense the transaction, and remain 
the relationship between the property of the transaction in the 
same time. This algorithm will not generate an itemset of 
candidates, and mined the date by increasing the frequent 
itemset[4,5]. The important step of FP-Growth algorithm is 
the process to construct the FG tree, which needs to scan the 
transaction itemset twice: scan the database of transaction T 
once to find out the frequent 1-itemset L, then arrange the 
support count in descending order to get the L_NULL;take 
the “Null” as the root node when scan the transaction itemset 
for the second time, then construct the FP-tree base on 
L_NULL. 

Here is an example to show how to construct FP-tree. 
Transaction itemset is shown in Table 1, define 
min_sup=20%, meaning that the minimum support is 2: 

TABLE I.  TRANSACTION ITEMSET T  

Tid Items 

1 I1,I2,I5 

2 I2,I4 

3 I2,I3 

4 I1,I2,I4 

5 I1,I3 

6 I2,I3 

7 I1,I3 

8 I1,I2,I3,I5 

9 I1,I2,I3 
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1) Scan the transaction itemset T, find out items whose 
support can meet the condition, combine those itemsets to 
get the frequent 1-itemset L, then arrange L in descending 
order base on the support count to get L_NULL as shown in 
Table 2: 

TABLE II.  L_NULL  

Item-name Support-counts 

I2 7 

I1 6 

I3 6 

I4 2 

I5 2 

2) Construct the original FP-tree and take the “Null” as 
the root node. 

3) Every row in the L_Null stands for a frequent itemset, 
point the corresponding pointer to it’s node in the FP-tree. 

4) Traverse the transaction itemset T, adjust the sequence 
of all the itemset in T according to L_null, shown in Table 3: 

TABLE III.  ADJUSTED TRANSACTION ITEMSET T  

Tid Items 

1 I2,I1,I5 

2 I2,I4 

3 I2,I3 

4 I2,I1,I4 

5 I1,I3 

6 I2,I3 

7 I1,I3 

8 I2,I1,I3,I5 

9 I2,I1,I3 

Build a branch for each transaction in Table 3. Share the 
path if the path of branch can be shared, and record the 
number of shared transaction in each node. The constructed 
FP-tree is shown in Fig.1: 

 

Figure 1.  FP-tree 

The next step is mining the frequent itemsets from the 
FP-tree after constructing the original FP-tree. The steps are 
as follows: 

 1) Produce conditional pattern base for every node in the 
FP-tree; 

 2) Build the corresponding conditional FP-tree by the 
conditional pattern base; 

 3) Mine the conditional FP-tree recursively and increase 
the frequent itemset belong to it in the same time: produce 
the involved frequent itemset immediately if the conditional 
FP-tree only contain one path. Otherwise increase the , ( is 
the suffix pattern and Ei is the last item of L_null, the 
minimum item of support count). Then construct the 
conditional pattern base and conditional FP-tree (The 
conditional pattern base is all the branch which take Ei as 
their leaf node in FP-tree. The conditional FP-tree of is a new 
FP-subtree taking the conditional pattern base as it’s 
transaction and constructed in the same way of the original 
FP-tree). 

    The thus obtained conditional pattern base and 
frequent itemset are shown in Table 4: 

TABLE IV.  CONDITIONAL PATTERN BASE AND FREQUENT ITEMSET  

item conditional pattern base  frequent itemset 

I5 <I2,I1:1>，<I2,I1,I3:1> <I2,I5:2>,<I1,I5:2>,<I2,I1,I5:2> 

I4 <I2,I1:1>,<I2:1> <I2,I4:2> 

I3 <I2,I1:2>,<I2:2>,<I1:2> <I2,I3:4>,<I1,I3:4>,<I2,I1,I3:2> 

I1 <I2:4> <I2,I1:4> 

Unlike the Apriori algorithm,FP-Growth won’t scan the 
database for many times and produce lots of candidate 
itemsets. FP-tree can save all the information used to mine 
the frequent itemset, long pattern belong to each transaction 
won’t be cut off, the higher a item’s frequent is the easier it 
can be shared, the number of node contained in tree will not 
more than the data of semi-intoxicated item in the database. 
But FP-Growth algorithm will produce large number of 
conditional pattern tree recursively in mining frequent 
pattern. It needs too large memory to apply in broad-scale 
database. 

III. IMPROVED FP-GROWTH ALGORITHM 

A. Items-constraint frequent pattern mining algorithm, 

ICFP-Mine[3] 

The FP-Growth algorithm, based on FP-Tree, is unable to 
distinguish whether one pattern is frequent while mining 
each sub-tree as the same patterns might scatter in different 
trees. As a result, the algorithm has to create a large number 
of conditional pattern trees and conditional pattern bases 
recursively in the process of mining the frequent patterns. [3] 
proposes an items-constraint frequent pattern mining 
algorithm, ICFP-Mine. It combines the same patterns in one 
tree, making it direct to judge whether the sub-tree is 
frequent. There is no need to build frequent pattern tree. The 
next step is to mine the frequent itemsets using the depth-
first method and mining with regulation strategy.  

The ICFP-Mine is superior to the traditional FP-Growth 
in memory occupancy and time costs. But its top-down 
merging and mining with regulation strategy limit its 
computing speed. The premise items-constraint is not 
pervasive. This paper uses the idea of combining and makes 
a further improvement. 

B. Improve FP-Growth Algorithm 

Improved FP-Growth algorithm: use the bottom-up 
merging firstly, and then depth-first mining. 
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Before merging, we focus on the leaf nodes whose 
support are less than the min_sup: If the father nodes or 
brothers of father nodes have the same pattern with the leaf 
nodes, combine them and then prune these leaf nodes; If 
there is not, just prune the leaf nodes. Next we focus on other 
leaf nodes(support is no less than the min_sup), the operation 
is merging the leaf nodes with the fathers’ or brothers’ of 
fathers’(have same pattern). We keep these leaf nodes 
instead of pruning them. 

We use the same example to illustrate the progress. The 
FP-Tree is as Fig.1 shown. The Null node has two leaf 
nodes:I2, I1. We deal with these two sub-trees respectively 
for further paralleling computing. 

For I2 sub-tree, consider the leaf nodes with support less 
than min_sup. Follow the bottom-up principle, start with the 
farthest leaf node I5. The support of I5 is less than min_sup, 
joint it with the upper level nodes whose name is also I5(the 
same pattern). Among three branches of <I2,I1>, the support 
of I4 is less than the min_sup, then joint it with the upper I4. 
After that, prune the leaf nodes I5 and I4 at the bottom level, 
as shown in Fig.2(a). 

Now we can focus on the leaf nodes that has support 
greater or equal to the min_sup on the basis of Fig.2(a). At 
this bottom there are two nodes I3 and I5. We joint these two 
leaf nodes with upper I3 and I5, and keep them instead of 
pruning them, as shown in Fig.2(b). 

 
(a) Processing of leaf nodes with support less than min_sup in I2 sub-tree 

 
(b) Processing of leaf nodes with support less than min_sup in I2 sub-tree 

Figure 2.  IFP-Tree Mining 

After combination, mine the frequent itemsets and depth 
first. We can get the result directly from the Fig.2(b). Follow 

the depth-first principle: {<I1,I3:2> ， < I1,I5:2> ，
<I2,I1,I3:2> ， <I2,I1,I5:2> ， <I2 ， I1:4> ， <I2,I3:4> ，
<I2,I4:2>，<I2,I5:2>}. 

The same operation with I1 sub-tree. Get the frequent 
itemsets: {<I1,I3:2>}. 

Finally joint these two itemsets. Combine those items 

having same prefix path: {<I1,I3:4> ， < I1,I5:2> ，
<I2,I1,I3:2> ， <I2,I1,I5:2> ， <I2,I1:4> ， <I2,I3:4> ，
<I2,I4:2>，<I2,I5:2>}. The result is in accordance with the 

one in Table 4. 
IFP algorithm adopts the bottom-up method to combine 

the same pattern and depth-first strategy to mine frequent 
itemsets. It is less complex and much faster than ICFP-Mine. 
It produces less intermediate results and needs less memory. 
As it is not items-constraint, the algorithm is more applicable. 
If there is a demand of constraint, just add it before pattern 
merging. 

IV. IFP-ALGORITHM IN MAPREDUCE 

Although IFP has advantages over other traditional FP-
Growth algorithm, dealing with mass data with TB or larger 
size is still inefficient. The solution is to parallel the 
computing to several nodes. Cloud computing is born with 
the ability of handling large-scale data and computing. So 
deploying the improved FP-Growth algorithm to the cloud 
platform is a promising way to solve the problem[6].And  
MapReduce is widely adopted by the cloud computing as a 
programming mode. Working the improved FP-Growth 
algorithm with the MapReduce, the steps are as followed: 

1) Calculate the frequency of the transaction database 
via one MapReduce task. FP-Growth algorithm has to scan 
the database once before building the tree. Generate the item 
header table based on the calculation in a descending 
order[9]. Then complete a FP-Tree. 

2) Master node splits the FP-Tree to several pieces. As 
the example shown in Fig.1, Master should split the FP-Tree 
into two pieces as I2 sub-tree and I1 sub-tree, send them to 
two slave nodes for mining using IFP algorithm. 

3) Two salve nodes send the result back to the Master. 
The Master combines these two frequent itemsets as the part 
3.2 introduced. 

As for other FP-Trees, the Null node may have many 
child nodes, just split them into appropriate pieces to relevant 
slave nodes. In actual mining, the FP-Tree may be too large 
that after splitting the sub-tree is still large for one node to 
compute. So we can go on splitting until meet the demand of 
memory and speed. Then send them back to upper nodes to 
gather and get the final result[5]. 

V. CONCLUSION AND PERSPECTIVE 

This paper makes an optimization of traditional FP-
Growth, named IFP(Improved Frequent Pattern) algorithm. 
This algorithm joints the same patterns based on the situation 
whether its support is less than the min_sup after building the 
FP-Tree. It uses the depth-first method mining the frequent 
itemsets and saves a great deal of space. It improves the 
efficiency considerably and is easy to parallel. Further more, 
the work that combines the improved FP-Growth algorithm 
with MapReduce programming model implements 
parallelization, greatly improves its capability dealing with 
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mass data. The next step is to conduct experiments on 
Hadoop and take the redundant situation into consideration. 
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