
VMPmonitor：An Efficient Modularity Approach for Hidden Process Detection 

 

Chaoyuan Cui  

Institute of Intelligent Machines 

Chinese Academy of Sciences 

Hefei, China 

cycui@iim.ac.cn 

Yun Wu  

Anhui Xunhuan Jingji Jishu GongCheng Yuan 

Chinese Academy of Sciences 

Hefei, China 

wuyun@iim.ac.cn 

Ping Li  

Department of Automation 

University of Science and Technology of China 

Hefei, China 

liping89@mail.ustc.edu.cn  

Rujing Wang  

Institute of Intelligent Machines 

Chinese Academy of Sciences 

Hefei, China 

rjwang@iim.ac.cn 

 

 

Abstract—With the development of the Cloud computing, more 

and more people are accustomed to resource sharing or online 

shopping. And malware has become a major threat to the 

Cloud safety. Process hiding is a powerful technique commonly 

used by stealthy malware to evade detection by anti-malware. 

In this paper, we present a novel approach called 

VMPmonitor-an efficient modularity approach for hidden 

process detection. With the help of the guest OS register 

information (mainly the ESP) collected by virtual machine 

monitor, VMPmonitor can implicitly capture the hidden 

process information of target guest OS. Compared to other 

approaches, VMPmonitor obtains guest process information 

implicitly. Using implicit information reduces its susceptibility 

to guest evasion attack. Experimental result shows that 

VMPmonitor has better reliability and accuracy. 

Keywords-security; malware; hidden process detection; 

virtual machine monitor 

I. INTRODUCTION 

With the rapid development of the Internet technology, 
computer network makes people’s life more and more 
convenient. People can shop or share resource through the 
network, so computer network security has become the focus 
of attention. The data of Kingsoft cloud security center 
shows: fishing website grows quickly in 2011, and outbreak 
later this year. The new fishing website number is 450000. 
The new fishing website of December is more than two 
times that of January. Trojans, hacking software and 
backdoor occupy most part of the viruses. Malware such as 
Rootkit uses various techniques to make system tools can’t 
detect its existence. Process hiding is a powerful technique 
commonly used by stealthy malware to evade detection by 
anti-malware. It has posed a great threat to the safety of the 
computer system and network. Therefore we propose 
VMPmonitor, a Xen-based front-end and back-end model to 
detect hidden process and protect the security of the system. 
VMPmonitor is based on Xen Hypervisor. 

The rest of this paper is as follows: Section II discusses 
related research in the area of detecting process. Section III 
presents the design of VMPmonitor, followed by the 
implementation details in Section IV. We then present 
evaluation results in Section V. Finally, Section VI 
concludes this paper. 

II. RELATED WORK 

Classical virtual machine security has been widely 
studied. In order to enhance system security, many 
researchers have adopted VMs to detect intrusions [1, 2] and 
diagnose system problems [3, 4]. Virtual machine monitor 
(VMM) has become an important platform for building 
honeypots. 

From the point of the implementation technology of 
secure monitor, the related works can be classified into 
internal monitoring and external monitoring. Lares [5] and 
SIM [6] are the typical system of internal monitoring. The 
internal monitoring needs to insert kernel module to the 
guest operating system, and it doesn’t have transparency. 
The kernel protection module and jump module is closely 
related to the virtual machine, so the internal monitoring 
don’t have versatility. External monitoring has an advantage 
over internal monitoring. Livewire [7] is a typical system of 
external monitoring, which does not affect the behavior of 
target virtual machine and is reliability. Livewire has taken 
an extremely conservative approach to introspection by 
primarily engaging in passive checks that incur no visible 
impact on system performance. However, the cost of this 
was that monitoring frequent asynchronous events, e.g. all 
system calls, may be quite performance intensive. 

In order to evade detection by anti-malware, an attacker 
often attempt to hide their malicious processes by modifying 
some aspect of the system using Rootkit. Hidden process is 
the most common security threat, so the system administrator 
must face this problem. VMwatcher [8] and Lycosid [9] can 
detect hidden process. Lycosid detects the processes by using 
cross-view validation techniques and least squares regression 

International Workshop on Cloud Computing and Information Security (CCIS 2013)

© 2013. The authors - Published by Atlantis Press 254



analysis. However, Lycosid recognizes the processes with 
probability which will lead to false positives or false 
negatives. Compared to Lycosid, VMPmonitor does not use 
cross-view and do little data processing which make 
VMPmonitor relatively lightweight. VMPmonitor is built 
with the merits of both high resistance and accuracy. 

III. DESIGN 

A. Background 

1) Xen and virtualization 
Xen [10] is a hypervisor providing services that allow 

multiple computer operating systems to execute on the same 
computer hardware concurrently. Xen supports para-
virtualization and hardware-assisted virtualization to run the 
guest operating system. In computing, a hypervisor or virtual 
machine monitor is a piece of computer software, firmware 
or hardware that creates and runs virtual machine. A 
computer on which a hypervisor is running one or more 
virtual machines is defined as a host machine. Each virtual 
machine is called a guest machine.  

Shadow page table (SPT) is often used in simulating 
more than one operating system on a single set of memory 
and processor. An operating system uses the SPT to map the 
virtual memory to its location on the physical memory. The 
introduction of the SPT makes memory virtualization is 
completely transparent for the guest OS. 

Since the introduction of the guest physical address, 
memory virtualization needs two address translation to 
support virtual address. The guest software determines the 
translation from guest virtual address (GVA) to guest 
physical address (GPA). The VMM determines the 
translation from guest physical address (GPA) to host 
physical address (HPA). The SPT can eliminate additional 
address mapping and achieve the translation from GVA to 
HMA. It improves the access efficiency.  

2) Linux kernel 
A process is an instance of a computer program that is 

being executed. Specifically, every process in Linux is 
represented by a process control block (define as task_struct). 
The task_struct data structure contains almost all of the 
information (e.g. state, stack, prio, tasks, mm, and children 
etc.). This structure is defined in linux-source-
3.2.0/include/linux/sched.h. The Linux kernel allocates a 
task_struct for each process through the slab allocator. When 
the slab allocator dynamically generates and stores the 
task_struct, the kernel creates a new data structure 
thread_info at the bottom of the kernel stack or the top of the 
kernel stack. 

The first member of the thread_info data structure is task. 
It stores a pointer, which points to the task_struct data 
structure. And stack is the second member of the task_struct 
data structure. It is a pointer, which points to the thread_info 
data structure. Figure 1 shows the relation between the 
task_struct data structure and the thread_info data structure. 

All running processes are linked by a doubly linked list. 
The linked list implements through the tasks member of the 
task_struct. Every tasks has a next pointer, which points to 
the next tasks of the task_struct data structure in the linked  

 
Figure 1.  The relation between the task_struct data structure and the 

thread_info data stracture. 

list. And every tasks has a prev pointer, which points to the 
previous tasks of the task_struct data structure in the linked 
list. We can traverse the entire process list through any one 
process. Figure 2 shows the connection between these 
processes through the linked list. 

B. System architecture 

Virtual machine manager is a lightweight software layer in 
Xen system. It is also called Xen Hypervisor. And the virtual 
machine is called a Domain.  Xen Hypervisor lies between 
operating systems and hardware. It provides the virtual 
hardware environment for operating system. Xen uses 
hardware-assisted virtualization. Figure 3 shows a typical 
Xen model. The virtual machine manager can use I/O device 
drivers of the exiting operating system and directly control 
physical resource in this model. Thus the efficiency of 
virtualization is improved than before. 

Privileged Domain (Dom0) is a virtual domain running on 
Xen. Dom0 has a native device driver and can direct access 
to hardware devices. It can control and manage other 
Domain through the interface provided by Xen. The guest 
virtual machine is Unprivileged Domain (DomU). DomU 
can migrate between different machines.  

In our approach, VMPmonitor is consist of front-end 
module and back-end module. The former is located in 
Dom0 and is used to analysis physical memroy, while the 
latter is in DomU and is a function library that contains detail 
information of process.  

IV. IMPLEMENTATION 

We have implemented VMPmonitor on Xen 4.1.2 and 
Linux 3.2.16. The VMPmonitor technology centers on 
locating the task_struct data structure of the guest machine. 
We can get useful information from this structure. 

 
Figure 2.  The connection between these processes through the linked list. 

255



In theory, if we want to read the members in task_struct 
data structure, the related head files need to be included in 
the VMPmonitor source code. Therefore we design the front-
end and back-end model. And this model is easy to extend to 
different virtual machine. 

We design a modularized method to implement this 
function. VMPmonitor is divided into two modules: front-
end module and back-end module. The function of the front-
end module is locating the HMA of the task_struct data 
structure by reading ESP locater and request the process 
information from back-end. The back-end is a function 
library, which includes a series of process information 
interface functions. Two modules are separately compiled 
into object files in Xen source code and Linux source code. 
Then we put them together to compile and produce the final 
executable file. 

A. Front-end module 

1) task_struct data structure 
The task_struct is the process descriptor of the Linux 

kernel. Every process has a task_struct data structure, which 
includes all information about the process.  

2) HMA of guest machine 
The VMPmonitor technology uses the ESP register to 

indicate the current stack’s location. When we start using the 
stack which is the same size as the THREAD_SIZE, the 
pseudo-code is as follows: 

1 struct task_struct* current_task_address() 
2 { 
3     struct task_struct *p; 
4     p=~(THREAD_SIZE-1)&esp; 
5     p=map_page(ctx,vcpu,p->task); 
6     return p; 
7 } 

The 4th line locates the thread_info data structure of the 
current process. What must do next is calling map_page() to 
translate the GVA to HMA, and finally the return value is 
just a pointer which points to task_struct with HMA. 

B. Back-end module 

After locating the HMA of the tasks_truct data structure, 
we can obtain the process information, such as pid, comm, 
stack, and children etc. For example, we can acquire process 
identification by the operation of reading p->pid as follows: 

1 int returnpid(guest_word_t *addr) 
2 { 
3   struct task_struct *p = (struct task_struct *) addr; 
4   return p->pid; 
5 } 

 

Figure 3.  A typical Xen model. 

V. EVALUTATION  

A. Experimental environment 

We test the performance of VMPmonitor on Xen 4.1.2 
and Linux 3.2.16. The specific configuration of experimental 
environment is shown in table 1.  

B. Experimental content 

.We have implemented VMPmonitor for Centos 6.4 (64 
bits) with Linux 2.6.32 (Dom1). VMPmonitor runs in the 
kernel mode of Dom0, thus does not affect the normal 
execution of Dom1. And this paper also can detect process in 
web page through JSP technology. Therefore we can detect 
the hidden process away from the real machine. 

1) Detect process\ 
At first, we use VMPmonitor to detect the process and 

display the process list in web page outside of Dom1. 
Domain identification, virtual CPU and OS type are the 
arguments requested by the executable file. Then we use “ps 
-e” command to obtain the process list in Dom1. In order to 
verify the accuracy of the result, we compare two results. 
Figure 4 shows the result of detecting process in two 
methods. The result demonstrates all processes in Dom1 can 
be displayed by VMPmonitor.  

2) Detect new process 
Then, we use VMPmonitor to detect the real-time process 

and display the process list in web page outside of Dom1. 
We start a new command (e.g. ping www.baidu.com) in 
Dom1. At the same time we start VMPmonitor program to 
detect this process. Figure 5 shows the results and we find 
the ping process in the process list. In order to guarantee the 
stability of this approach, we use vim command to try again. 
And VMPmonitor can detect the vim process quickly. 

3) Detect hidden process 
At last, we use VMPmonitor to detect the hidden process. 

We use adore-ng as a sample, which is an advanced Linux 
kernel rootkit that can hide files and processes. In our test, 
adore-ng.ko is firstly loaded into Dom1. Then we execute 
“./ava i 1202” command to hide sshd process with PID 1202.  

And we start VMPmonitor to detect this hidden process. 
Figure 6 shows the results and we find the sshd process in 
the list. The outputs from the command ps is manipulated to 
conceal the existence of any process with PID 1202. Thus we 
can’t find ssh process in the Dom1 through “ps -e” command. 
We have made several experiments by hiding different 
processes. But VMPmonitor can detect the hidden process 
accurately. Therefore, the result shows the effectiveness of 
this approach through the comparison between internal and 
external process list. 

TABLE I.  CONFIGURATION OF EXPERIMENTAL ENVIRONMENT 

 Xen Hypervisor Guest OS 

OS Ubuntu12.04(desktop, 
64bits) 

Centos 6.4 (server, 
64bits) 

Linux kernel 3.2.16 2.6.32-
358.14.1.e16.x86_64 

Xen Xen_4.1.2  

others CPU: 4; RAM: 4G CPU: 1; RAM: 1G 

256



 
Figure 4.  Result of detecting process. 

 
Figure 5.  Result of detecting new process. 

 
Figure 6.  Result of detecting hidden process. 

VI. CONCLUSION 

In this paper, we present a novel approach called 
VMPmonitor to detect hidden process accurately. 
VMPmonitor can obtain the real-time and hidden process list 
outside of the virtual machine. The experiments prove that 
this approach is accurate and effective. And the modular 
mechanism has strong portability and reusability. 

VMPmonitor can only achieve the basic hidden process 
detection, so we want to implement hidden file detection, 
hidden port detection and hidden registry detection in the 
future. Finally, we must combine all kinds of detection 
information to judge whether there is any malware in the 
system. 

REFERENCES 

[1] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detecting Past 
and Present Intrusions through Vulnerability-Specific Predicates. 
Proc. the 20th ACM Symposium on Operating System Principles, Oct. 
2005, pp. 91-104. 

[2] K. Kourai and S. Chiba. HyperSpector: Virtual Distributed 
Monitoring Environments for Secure Intrusion Detection. Proc. the 
1st ACM/USENIX International Conference on Virtual Execution 
Environments, June 2005, pp. 197-207. 

[3] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging operating 
systems with time-traveling virtual machine. Proc. the 2005 USENIX 
Annual Technical Conference, Apr. 2005. 

[4] A. Whitaker, R. S. Cox, and S. D. Gribble. Configuration Debugging 
as Search: Finding the Needle in the Haystack. Proc. the 6th 
Symposium on Operating Systems Design and Implementation, NOV. 
2004. 

[5] B. D. Payne, M. Carbone, M. Sharif, W. Lee. Lares: A Architecture 
for Secure Active Monitoring Using Virtualization. Proc. IEEE 
Symposium on Security and Privacy, 2008, pp. 233-247. 

[6] M. I. Sharif, W. Lee, W. Cui, A. Lanzi. Secure in-VM Monitoring 
Using Hardware Virtualization. Proc. the 16th ACM Conference on 
Conputer and Communications Security, 2009, pp.  447-487. 

[7] T. Garfinkel and M. Rosenblum. A Virtual Machine Introspection 
Based Architecture for Intrusion Detection. Proc. the 10th Annual 
Network and Distributed System Security Symposium, Feb. 2003. 

[8] X. Jiang, X. Wang, D. Xu. Stealthy Malware Detection Through 
VMM-Based “Out-of-the-Box” Semantic View Reconstruction. Proc. 
the 14th ACM Conference on Computer and Communications 
Security , 2007, pp. 128-138. 

[9] S. T. Jones, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau. VMM-
based Hidden ProcessDetection and Identification using Lycosid. 
Proc. the 4th ACM SIGPLAN/SIGOPS International Conference on 
Virtual Execution Environments, 2008, pp. 91-100. 

[10] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. 
Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of 
Virtualization. Proc. the 19th ACM Symposium on Operating 
Systems Principles, Dec. 2003,pp.164-177. 

 

257




