
Design and Implementation of Data Encryptionin Cloud based on HDFS

Zhonghan Cheng

Nanjing University,Nanjing,China

e-mail: chengzhonghan47@gmail.com

Diming Zhang
Jiangsu University of Science and Technology,

Zhenjiang, China

e-mail: zhangdiming@gmail.com

Hao Huang
Nanjing University,Nanjing,China

e-mail: hhuang@nju.edu.cn

Zhenjiang Qian
Nanjing University,Nanjing,China

e-mail: zhenjiang.qian@gmail.com

Abstract—As an open-source distributed programming

framework, Hadoop has gradually become popular in industry

recently. Its distributed file system (HDFS) enables storing

large data with advantages of high fault tolerance and

throughput. However, the fact that the current HDFS does not

support intra-cloud data encryption yet makes data privacy

becomes a key security issue. This paper presents ahybrid

encryption method based on HDFS. We adopt symmetric

encryption to encrypt and decrypt file blocks at datanodes and

use asymmetric encryption scheme to protect the symmetric

keys. By this method, we can prevent datanode intruders from

stealing user data, while ensuring that clients are lightweight.

The experiments show that with and without block encryption

algorithm, our solution brings43% and 2% performance

degradation compared to the generic HDFS.

Keywords-Hadoop; Distributed File System; Data

Encryption;

I. INTRODUCTION

 Hadoop [1] is a distributed platform developed by the
Apache Foundation for reliable, efficient and scalable
storage and computing on large data. It provides a unified
interface to users so that they can develop and enjoy services
without knowing the details of cloud. It is an open-source
project implemented in Java, and originates from Google’s
distributed computing framework. Due to its features of high
reliability, scalability, supporting for cross-platform, it has
been widely studied and applied by academia and industry.
The Hadoop project contains distributed storage service
HDFS (Hadoop Distributed File System), large-scale
parallel computing framework MapReduce, distributed
database HBase, data warehouse tools Hive, distributed lock
facilities Zookeeper and other subprojects.

 The main design principles of HDFS can be tracedback
to GFS (Google File System) [2]. It utilizes storage capacity
of large scale clusters, and provides users with a transparent
interface similar totraditional file system owing to master-
slave structure. The master (called namenode) is used to
keep metadata of HDFS and interact with users to manage
their files in cloud. The slave (called datanode) is
responsiblefor storing files.

At the beginning of HDFS design phase, the main
consideration was to improve data reliability and storage
efficiency but data privacy was overlooked. Nevertheless,
when HDFS provides storage services to users as a public
cloud, files belonging to different users may be uploaded to
the same machine. If there is no data protection measure,
data leakage is likely to occur since datanode intruderscan
obtain file plaintext directly. Currently, the security work of
Hadoop project is still at its infancy stage, andonly simple
access control mechanisms and file permission are employed
[3, 4]. Therefore, most of the current commercial companies
just use Hadoop to build private clusters.

 This paper proposes a hybrid encryption method for
HDFS to protect intra-cloud data privacy while keeping
client lightweight. From the experiment results, we present
that even if the performance degradation caused by our
solution reaches 43%, we can parallel the data
encryptionalgorithm by extra computing units to reduce the
overall overhead substantially since the unavoidable
architecture overhead is only2%.

 The remainder of this paper is organized as follows. In
Section 2 and 3, we present the related work and the
background. Design and implementation of our approach for
HDFS is described in Section 4. Followed by our evaluation
in Section 5, we summarize our paper in Section 6.

II. RELATED WORK

 There has merged a significant body of studies that
proposed measures to secure HDFS with data privacy
protection. SAPSC[5], a secure architecture has been
proposed, including data isolation service, intra-cloud data
migration service and inter-cloud data migration service. In
hybrid cloud environment, it places sensitive data separately
at private storage cluster and normal data at public cluster.
Different from such data isolation solution for hybrid cloud,
we focus our attention on data encryption for single cloud.

Hearn et al. [6] presenteda distributed storage prototype
named Tahoe that integrates access control, encryption and
erasure coding for fault-tolerance for secure. Tahoe-LAFS [7]
is a middle layer between Hadoop and Tahoe that makes
MapReduce be able torun on Tahoe seamlessly. Lin et al [8]
proposed two hybrid encryption schemes—HDFS-RSA and

International Workshop on Cloud Computing and Information Security (CCIS 2013)

© 2013. The authors - Published by Atlantis Press 274

mailto:chengzhonghan47@gmail.com
mailto:hhuang@nju.edu.cn

HDFS-Paring, by modifying the fuse-dfs module in HDFS.
Methods in [6, 8] both deploy the encryption/decryption
modules at clientsin order to easeimplemented. However, the
cloud client should be lightweight, inserting encryption,
decryption and key management intoit would lead to heavier
load and more complexity. Seonyoung et al. [9] employed
AES algorithm to achieve encryption at clients and
decryption at datanodes, but its main drawback is that the
session keys are not protectedand consequently invaders can
still steal the data plaintext easily by obtaining them.We
deploy security modules at datanodesand leave the
namenode unchanged toavoid it becoming a single point of
failure. We let the client keeps the secret key so that the
client is the ultimate controller of the data privacy. On the
other hand, our solution keeps the client lightweight and fits
the mobile environment.

III. BACKGROUND

 In the early design stage of HDFS, the major
assumptions would be the following key points:

 There are a large number of nodes in the system.
Failures of hardware, programs or operating
system bugs, or human errorsmay lead to nodes
fail.

 The system is mainly used to store large files.

 It is assumed that reading frequency is much
higher than writing, and appending new data is
supported rather than overwriting existing data in
writing case.

 HDFS pays more attention on sustained
bandwidth than latency because it assumes that
there are few applications have stringent response
time requirements.

 To meet the above requirements, HDFS splits files
stored into fixed-size blocks. The cluster is divided into a
namenode to manage the metadata and multiple datanodes to
store blocks. The namenode is the entry of the whole cloud,
the metadata contains namespace, access control information,
mapping from files to file blocks and block location
information. The other nodes are datanodes thatoperate files
in terms of blocks that each block has a unique ID. The
namenode provides a publicand transparent interface to
clients. A client would visit the namenode first to get the
metadata of files that it needs, and then communicates with
datanodes to download and upload blocks.

On the abovementioned fundamentalmechanisms, HDFS
presentssome measures to improve data reliability and
throughput of reading and writing.First, it keeps multiple
replicas for each block across different datanodes toavoid
data lost. Second, the namenode must check the validity of
all datanodes periodically and keepsenough number of block
replicas. Third, by choosing a large block size(default
64MB), it can reduce the size of the metadata storing on the
namenode and cut downnetwork overhead caused by block
mechanism. Forth, considering the assumption that HDFS
doesn’t need to support inserting and modifying datain the
middle of a file, each block belonging to the same file can be
distributed across different datanodes.

The steps of reading a file in HDFS are as below:
1) The client sends the path, offset and length of the

file portionthat it needs to read.
2) The namenode searches the metadata by the

information sent by the client, andpasses back the
location lists of the blocks that belong to the file.

3) For each block location list, the client connects the
closest datanode and creates a data stream with it to
download block data.If an error occurs during
creating connection or downloading, the client
would try to connect to the other datanodes in the
list.

4) The reading processends upuntilthe client receives
all blocks of the file over.

The steps of writing are similar to reading, except that
when the client receives the block location lists from the
namenode, it writes data to all datanodes in the list to ensure
enough block replicas. More specifically,the client createsa
pipeline with these datanodes, uploads data to the first
datanode, and then the first datanode delivers to the second
one and so on. When the pipelineprocess ends, the client
notifies the namenode to update the relevant metadata.

IV. DATA ENCRYPTION BASED ON HDFS

A. System Architecture

 From the above description of HDFS, we can draw
suchtwo conclusions: 1) the namenode provides clients with
a unique entry that is responsible to manage all datanodes
within HDFS and exchange metadata with clients. It is likely
to become aperformance bottleneck of the whole cluster.2)
The client should be lightweight, andits function should be
as simple as possible and the information relevant to users
should be placed in cloud.

 Our security demand is to prevent attackers stealing file
data after they intruding into datanodes. We insert
encryption and decryption modules into datanodes, as shown
in Figure 1. The modules use AES algorithm to encrypt
blocks before writing and decrypt before reading. One data
block is encrypted and decrypted with a key which is also
stored on datanode. As encryption, decryption and key
management modules are deployed at datanodes, the
modifications to the original protocol between datanodes and
namenode remains unchanged. The authentication protocol
and key exchange protocol is implemented and deployed at
clients and datanodes.

Client

NameNode
metadata

DataNode

FSData Stream

Encryption and

Decryption

Disk I/O

blocks

Distruted

FileSystem

Key Management

FSData Stream

Figure 1. Overview of encrypted HDFS

275

B. Key Management

 We can’t guarantee data privacy by just encrypting file
block since if the AES keys used to encrypt the data block is
stored on datanode in plaintext, attackers can decrypt blocks
by stealing the AES key first in plaintext after they
permeating into the datanode.In order to solve this problem,
we employ asymmetric encryption algorithm RSA to
encrypt AES keys, and save the encrypted AES key on the
datanode. The RSA key pair is generated by client, and the
private key is maintained on client, and the public key is
stored on namenode as metadata. The private key can be
encrypted by the key generated from the hashed user
password and stored as file.We can also save the user private
key in the USB key. Figure 2 shows the abstract of hybrid
encryption scheme.

File

B1 B2 Bn...

EAES(kB1,B1) EAES(kB2,B2) EAES(kBn,Bn)...

AES key

 k (AES key)

kB1 kB2 kBn...

ERSA(p,kB1) ERSA(p,kB2) ERSA(p,kBn)...

p (RSA public key)

Figure 2. Abstract of hybrid encryption scheme

C. Implementation

 We have implemented the two encryption algorithms
by JEC (Java Cryptography Extension). In AES encryption,
we split block ciphertext into 16 bytes sections, and we don’t
padding the last section when it is less than 16 bytes. CFB
mode [9] is applied that the length of block ciphertext would
not increaseafter encryption.

1) Encryption
 We add encryption module intothe code of creating file

indatanode. Figure 3depicts the timing diagram of the
procedures during encryption. The client generates an RSA
key pair when it initializes, then the public key is uploaded
to the namenode. When it requeststhe namenode to createa
file, the namenode sends back the metadata including the list
of datanodes used to store the new file and the client’s RSA
public key. For each file block, the client sends the public
key to the first datanode in pipeline then delivers the block
data in packet. Then the datanode generates an AES session
key after receiving the new block, uses the key to encrypt
the block data and the RSA public key to encrypt AES key.
Finally, the datanode savesthe encrypted file block and the
encrypted AES session keyon the local disk as a separate file.
We set the name suffix of a key file as its block ID so that
datanode can search itby its filename. The other
datanodesused to savethe block replica in pipeline get
theencrypted block and the encrypted sessionkey directly
from the previous onewithout re-encrypting.

Client NameNode DataNode1

writing request

datanode list and

RSA public key p

plaintext of block B

and p

Search

metadata

DataNode2

Generate AES key kB for B;

Get block ciphertext EAES(kB,B) by

encrypting B with kB;

Get key ciphertext ERSA(p,kB) by

encyrpting kB with p;

EAES(kB,B) and

ERSA(p,kB)

ACK packet

ACK packet

Figure 3. Timing diagram of the procedures during encryption

Note thatHDFS checks the integrity of file blocks by
CRC(Cyclic Redundancy Check). The client calculates the
CRC codes of a block by per 512 bytes and uploads them
with block to datanode. The datanode recalculates the
checksums periodically, checks whether the results equal to
the original values find possible errors occurs in the contents
of blocks. Client also needs to recalculate the checksums
before reading blocks. Since the checksums on datanode are
calculated by clients with the file plaintext, after adding
encryption module, the thread named “DataBlockScanner”
would calculate the checksumsperiodicallywith ciphertext,
causing the results mismatch. Our solution is to recalculate
the checksum by block ciphetext instead of the original
values after encryption at datanode.

2) Decryption
 As shown in Figure 4, after the datanode receiving

readingblock request by client, it sends back the
corresponding AES key ciphertext. The client decrypts it by
its RSA private key and sends the AES key to the datanode.
Finally, the datanode gets the block plaintext and transportsit
to the client.

Client NameNode DataNode

reading request

datanode list

ERSA(p,kB)

Search

metadata

Request ciphertext

ERSA(p,kB) of key kB

Get kB by decrypting

ERSA(p,kB) with RSA

secret key s

kB

Get plaintext of block B by

decrypting EAES(kB,B) with kB

plaintext of block B

Figure 4. Timing diagram of the procedures during decryption

276

V. EVALUATION

A. Environment

Werun experiments in a small testbed containing of two
machines.The hardware configuration of the namenode is 8-
core Intel Xeon 2.00 GHz, 10 GB memory, and 1 TB hard
disk.The datanode has 16-core 2.2 GHz, 20 GB memory,
and 2 TB hard disk. The configuration of replication is 1.

B. Encrypted HDFS with and without Data

Encryption/Decryption Algorithms vs. Generic HDFS

Note that the performance overhead contains the portion
of block encryption/decryption algorithms and the
architecture overhead caused by key protection and
management, modification to protocol among nodes,
checksum recalculation.We expect to evaluate the overall
overhead and the unavoidable architecture
overheadseparately. In order to evaluate the latter one, we
replace the AES algorithm with identity function in code and
keep the other functions of our method unchanged.

1) Encryption
In the encryption case, we have compared the writing

throughput of the encrypted HDFS with the generic HDFS
by creating files of various sizes. As shown in Figure 5,the
throughput reaches maximum when creatinga 512 MB filein
generic HDFS and 256 MB in encrypted HDFS. The
performance degradation varies with file size, it reaches
maximum 53% when the file size is256 MB, and drops to
minimum33% at 8 MB, which is 43% at 1GB.

Figure 5. Writing throughput: encrypted HDFS vs. generic HDFS

It is obvious that the significant overhead is mainly
caused by the encryptioncomputingwhich needs to be
serialized with the network transport and disk operations at
datanode.However, by observing the encrypted HDFS
withoutdata encryption algorithm,we realize thatthe ratio of
the architecture overhead is negligible (about 2%), so the
encryption/decryption processes can be completely migrated
to GPUs or encryption cards to reduce the overall overhead
substantially.

2) Decryption
We have performed reading files of different sizes in

cloud to evaluate the decryption overhead. As shown in
Figure 6,the reading speed is 1.4 timeshigherthan writing
when the file size is 1 GBsince the reading operation on disk
is faster.Due to the efficiencyof AES decryption is close to
encryption, the decryption module brings more significant
performance degradation (75%) than encryption. But the
architecture overhead of decryption equals to the one in the
encryption case.

Figure 6. Reading throughput: encrypted HDFS vs. generic HDFS

VI. CONCLUSION

 There is no effective mechanism for file privacy
protection HDFS, so it is unsecure to apply it in real cloud
environment. In this paper, a data encryption method based
on HDFS is presented. We employed hybrid encryption
scheme to protect file blocks and session keys, which can
prevent datanode intruders from stealing user data. In
contrast to the other similar works, we keep the advantage of
lightweightness for client. The experiments show thatthe
proposed method introduces 43% overhead, but the
architecture overhead is negligible. Therefore, the future
work is to take advantage of GPUs or multicore technology
for paralleling the encryption/decryption modules to
improve the overall performance.

ACKNOWLEDGMENT

The work is supported by the National High Technology
Research and Development Program (863 Program) of
China (No. 2011AA01A202), the National Science
Foundation of China (No. 61021062),the “Six Talents Peak”
High-Level Personnel Project of Jiangsu Province (No.
2011-DZXX-035).

REFERENCES

[1] Tom White, Hadoop: The Definitive Guide. O’Reilly Media, 2009.

[2] Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The
Google file system." ACM SIGOPS Operating Systems Review. Vol.
37. No. 5. ACM, 2003.

[3] The apache hadoop. http://hadoop.apache.org/.

[4] Owen O’ Malley, Kan Zhang, Sanjay Radia, Ram Marti, Christopher
Harrell. Hadoop Security Design, Technical Report, 2009.

[5] Shen, Q., Yang, Y., Wu, Z., Yang, X., Zhang, L., Yu, X., ... & Long,
M. (2012, March). SAPSC: Security Architecture of Private Storage
Cloud Based on HDFS. In Advanced Information Networking and
Applications Workshops (WAINA), 2012 26th International
Conference on (pp. 1292-1297). IEEE.

[6] Wilcox-O'Hearn, Z., & Warner, B. (2008, October). Tahoe: the least-
authority filesystem. In Proceedings of the 4th ACM international
workshop on Storage security and survivability (pp. 21-26). ACM.

[7] Tahoe-LAFS. https://tahoe-lafs.org/trac/tahoe-lafs.

[8] Lin, H. Y., Shen, S. T., Tzeng, W. G., & Lin, B. S. (2012, March).
Toward Data Confidentiality via Integrating Hybrid Encryption
Schemes and Hadoop Distributed File System. In Advanced
Information Networking and Applications (AINA), 2012 IEEE 26th
International Conference on (pp. 740-747). IEEE.

[9] Park, Seonyoung, and Youngseok Lee. "Secure Hadoop with
Encrypted HDFS." Grid and Pervasive Computing. Springer Berlin
Heidelberg, 2013. 134-141.

[10] Advanced Encryption Standard. http://en.wikipedia.org/wiki/

Encryption_Standard.

277

http://hadoop.apache.org/
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

