
Security Vulnerabilities in SAML based Single Sign-

On Authentication in Cloud

Kirandeep Kaur, M.E. Research Scholar

Computer Science Engineering

PEC University of Technology

Chandigarh, India

Kiran.bbsbec@gmail.com

Dr. Divya Bansal, Associate Professor

Computer Science Engineering

PEC University of Technology

Chandigarh, India

divya@pec.edu.in

Abstract— Cloud computing is introducing numerous changes

to one’s lifestyle and working pattern for its infinite benefits.

Companies have increasingly turned to Software as a Service

(SaaS) or Application Service Providers (ASPs) vendors to offer

specialized web based services that have huge potential to cut

costs and provide specific applications to the users in a very

convenient way. However, the security of cloud computing is

always a serious issue for numerous potential cloud users, and

also a big roadblock for its far-flung applications. One of the

major challenges remains to be an integrated authentication

mechanism over cloud environments through Single Sign-On. In

this paper, the authors report their work of implementing

Security Assertion Markup Language (SAML) to enable Single

Sign-On (SSO) based authentication in a multiple web

application cloud environment. The paper also reports serious

vulnerabilities prevalent in such an environment and describes a

detection method for the same.

Index Terms— SSO, SAML, Authentication, Confidentiality,

Availability, Integrity, Vulnerability

I.INTRODUCTION

With increasing number of web based systems and

applications, end users have to memorize and keep multiple

usernames and passwords for each system and application.

This poses an additional challenge to developers and support

staff as many end users invariably forget credentials to less

commonly used applications. The same password is also used

for multiple accounts leading to weakening of the security of

authentication systems.

 Single Sign-On (SSO) [1] protocols attempt to address

this issue by allowing a user to enter credentials once to

authenticate across multiple systems and applications which is

prevalent in today’s cloud environment. This is commonly

accomplished by having an identity provider that maintains

user credentials which are then passed to relying party to

authenticate users [2].

For the accomplishment of Single sign-on authentication

mechanism, SAML has been adopted over other existing SSO

products like Microsoft passport [2], OpenID [3] due to their

inherit phishing vulnerabilities and also because they didn’t

establish a trust relationship between identity provider and

service provider causing a malicious service provider to easily

configure their authentication mechanism to redirect the user

to their own identity provider. These can be further designed

to be visually identical to the legitimate identity provider

misleading the cloud user.

Over the years various products have been providing

support for web-based SSO. These products typically depend

on browser cookies to maintain user authentication state

information so that re-authentication is not required, each time

the user accesses the cloud resources. Since browser cookies

are not transmitted between DNS domains, the authentication

state information of users in the cookies from one domain is

never available to another domain [4].

These products therefore have typically supported cross

domain SSO (CDSSO) [4] through the use of proprietary

mechanisms to pass the authentication state information

within the domains.

The security of a SAML SSO solution critically depends on

several assumptions such as trust relationship amongst the

involved parties and security mechanisms like the secure

transport protocols used to exchange messages. Many security

recommendations that are available throughout the SAML

specifications are useful in avoiding the most common security

pitfalls but are of little help. Therefore, it is very difficult to

achieve the needed level of assurance.

II.SECURITY ASSERTION MARK-UP LANGUAGE (SAML)

The Security Assertion Mark-up Language (SAML) is an

XML based language designed for making security statements

about subjects. SAML assertions are used as security tokens in

WS-Security and in REST based Single Sign-On (SSO)

scenarios [5]. Several profiles are defined in [6] and the most

important profile is the Browser SSO profile, which defines

how to use SAML with a web browser.

In SAML based Single Sign-on approach, users

authenticate only once to a trustworthy identity provider (IdP).

After a successful login of a user, the identity provider issues

security tokens on demand. These tokens are used to

authenticate to Relying parties (RP) [4].

III.RELATED WORK

The first browser based SSO protocol was Microsoft

Passport which originally intended as an authentication

mechanism for its Hotmail service, then later reintroduced as a

fully featured SSO targeted at online shopping sites. It

supported multi factor authentication like mobile device

International Workshop on Cloud Computing and Information Security (CCIS 2013)

© 2013. The authors - Published by Atlantis Press 294

registration which contained their mobile number and a

custom PIN (Personal Identification Number) and several

mechanisms for preventing attacks like if a user enters a

password incorrectly five consecutive times, .NET Passport

automatically block access to account for two minutes [7].

Besides several advantages, Microsoft Passport faces several

challenges for their existence as many of the online merchants

using the passport service for online purchases moved away

from the platform due to flaws that are revealed [8].

Kelly D. Lewis et al. [9] has described the implementation

of Security Assertion Markup Language and its capabilities to

provide secure single sign-on (SSO) solutions for externally

hosted applications. They mentioned that by using SSO

solutions, user experience is enhanced by eliminating

additional usernames and passwords but there are some major

security issues like replay attack which exploits the credentials

that are exchanged between asserting party and relying party.

Projects like The Liberty Alliance Protocol [10] and

Shibboleth [11] base their protocol on the SAML message

standard. But Liberty Alliance Protocol is not a standardized

process [12] whereas Shibboleth project is a SAML

application for inter-university federation.

Jorg Schwenk, et al. [13] presents an in-depth analysis of

SAML frameworks and shows that SAML v 2.0 has critical

XML Signature Wrapping (XSW) vulnerabilities. They

showed that the application of XML Security heavily depends

on the underlying XML processing system. They proposed a

formal model by analyzing the information flow inside the

relying party and presented countermeasures XML Signature

Wrapping (XSW). XSW attacks have first been described by

McIntosh, M et al. in 2005 [14].

McIntosh et al. [14] have presented several XSW attacks

and discussed receiver-side security policies in order to

prevent such exploits. They have however not given a proper

solution for this problem.

Wang et al. [15] describes the importance of SSO

protocols. This work has analyzed the security quality of

commercially deployed SSO solutions. It has shown eight

serious logic flaws in high-profile IdPs and RPs, which have

allowed an assaulter to login as the victimized user.

While going through existing research work, we found that

application of XML security heavily depends on the

underlying XML processing system. This processing system

involved can have inconsistent views on the same secured

XML document, which may result in successful XML

Signature Wrapping (XSW) attacks. So after the creation of

SAML assertion used for authentication, compliance policy of

SAML needs to be checked and non-conformance issues need

to be reported and addressed. In this paper, we have

implemented authentication mechanism using OpenSAML

v2.0 to enable SSO. Then, we have detected serious

vulnerabilities in such an environment and proposed solutions

to mitigate the same.

A. Comparative analysis of SSO protocols

A number of solutions for browser-based SSO are

available: the OASIS Security Assertion Markup Language

(SAML) 2.0 [4], Microsoft Passport [2], the Liberty Alliance

project [12], the Shibboleth Initiative [11], and OpenID [3] are

the most popular.

An adoption of SAML for SSO authentication on the basis

of comparison on some important factors has been described

in table I [16]:

TABLE I Comparison of SSO protocols

 OpenID SAML

SP Initiated SSO Yes Yes

IdP Initiated SSO No Yes

IdP Discovery Configured per user Configured per account

Just in time

provisioning

Indirectly via back

channel

Directly

Performance Slower Faster

Implementation Simpler Complex

Positioning Consumer Enterprise

As it is clear from table I that, SAML has advantages over

OpenID in terms of faster performance, User provisioning for

the end user as compared to OpenID. Further, SAML is

enterprise based which means that an organization needs to

have single Identity provider for an application and all users in

that application can sign in with their e-mail address and

username whereas OpenId is user centric which means that

every user has its own OpenID registered in that application.

Because of the above mentioned advantages SAML has been

adopted by organizations.

IV.SOLUTION APPROACH/PROPOSED SCHEME

In this section, we introduce the SAML framework that

describes how SAML assertion is created that is used for

authentication mechanism. Following are the points that give a

brief idea about how process flow:

 Create SAML assertion using OpenSAMLv2.0

between service provider and identity provider.

 Identify vulnerabilities and how adversary can exploit

it.

 Analyze the usage of SAML assertion and detect

possibilities of inserting malicious content to exploit

those vulnerabilities.

 By using Common vulnerability Scoring System

(CVSS) [18] tool, check how vulnerable the

application is.

 On the basis of detection of vulnerabilities, build

different approaches to overcome.

 Again use tool to check vulnerabilities and compare

score created before and after hardening.

SAML framework (see Fig 2) can be explained as:

We develop an assertion which is created by using open

source products available like we used OpenSAML between

identity provider and service provider. Following we describes

step by step procedure that how assertion is created by using

OpenSAML and mechanism that are used while authenticating

the user who accessing the resources related to Service

provider. It is Java-based and can be implemented in Java

application environments with relative ease through the use of

JSP tags and servlet filters.

295

Fig.2. Overview of SAML Framework

A. Analysis of SAML structure

The structure of SAML assertion has been described in

 Fig.3.The issuing time of the assertion is defined in

saml:IssueInstant. The saml:Issuer element specifies the IdP

that is making claims in the assertion. saml:Subject defines

the principal about whom all statements are made.

<saml:Assertion Version ID IssueInstant>

<saml:Issuer>

<ds:Signature>?

<saml:Subject>?

<saml:Conditions>?

<saml:Advice>?

<saml:AuthnStatement>*

<saml:AuthzDecisionStatement>*

<saml:AttributeStatement>*

</saml:Assertion>

 Fig.3. SAML assertion structure

 (“?” represent zero or one occurrence; “*” represent zero or more

occurrence)

To protect integrity of claims that are made by the Issuer,

whole saml:Assertion element must be protected with a

digital signature that must follows the XML Signature

standard. SAML specification requires that saml:assertion

must be referenced by signature element, with an enveloped

XML Signature (see Fig. 4) [13].

B. OpenSAML Vulnerability

After creation of SAML assertion, identify vulnerabilities

and how adversary can exploit it, attacker may register as a

user of an Identity Provider IdP. The adversary then receives,

through normal interaction with IdP, a valid signed SAML

assertion making claimed attacker. The attacker now adds

additional claims like evil assertion about any other subject S,

and submits the modified document to RP [13].

But glitches in the Apache Xerces library which execute a

schema validation process of each incoming XML message

creates problem in the processing of XML elements that are

defined with xsd: any and moreover the content of the

elements which are defined <xsd: any

processContents=”lax"> are processed incorrectly [17] so it

is possible to insert elements with arbitrary and also

duplicated Ids inside an XML message. This helps us to create

a good position for our wrapped content.

Fig.4. SAML assertion is placed into a root element (header) and signed using
an enveloped signature [13]

Implementations of Apache Xerces for Java and C++

handled elements differently. As we are using Java application

so we take into account Java implementation. In Java,

legitimate assertion has to be placed within or after the evil

assertion. In short, if two elements with the same identifiers

(Ids) values occurred in an XML message, the XML security

library detected only the last element in the message whereas

in the case of C++, it will detect first element in the message.

This gave a chance to attacker to use this extension for

injection of an evil element.

Fig. 5. XSW attack on OpenSAML library [13]

C. Common vulnerability Scoring System

The National Vulnerability Database (NVD) [18] is the

U.S. government repository of standards based on

vulnerability management data that provides CVSS scores for

almost all known vulnerabilities. CVSS is an open source

framework designed to provide end users with an overall

composite score representing the severity and risk of a

vulnerability. It benefits all persons concerned with

information security for calculating score for IT

vulnerabilities. It is platform and technology independent [18].

These are used to generate both numeric score ranging

from 0(least severe) to 10 (Critical) and this indicates the

296

severity of the vulnerability [18]. A CVSS Score is calculated

which is based on 3 sub-scores:

a) Base Metrics,

b) Temporal Metrics and

c) Environmental Metrics

To calculate the severity of vulnerabilities that exists in our

framework, we use CVSS base score metrics to calculate the

rate as base score metrics is mandatory where as other two

metrics are unique to any user’s environment. The CVSS Base

Score indicates built-in and key characteristics of vulnerability

that are constant over time [18].

Equations for calculating CVSS Base score

BaseScore = (0.6 * Impact + 0.4 * Exploitability – 1.5) *

f(Impact) (1)

Equation(1) is calculated by the use of three metrics i.e.

Impact, Exploitability and f(Impact) and these further depend

on sub metrics which are described in the following equations:

Impact = 10.41 * (1 – (1 – ConfImpact) * (1 –IntegImpact)

* (1 – AvailImpact)) (2)

In Equation (2), ConfImpact describes the degree of breach

of information to an unauthorized user or organization.

IntegImpact specifies the amount of modification that has

been done to information when an attacker succeeds in

launching an attack. AvailImpact reflects accessibility loss of

resources due to a successful attack by an assaulter [18].
The possible values for these metrics are: None, Partial,

Complete [18] which depicts the possible danger that could

affect individuals and/or the organization if resources were

inappropriately accessed, used, or disclosed.

Exploitability = 20 * AccessComplexity * Authentication *

AccessVector (3)

In equation (3), AccessComplexity measures the degree of

complexity of target system for launching an attack with

possible metrics as high, medium or low [18]. Authentication

defines how many times an adversary needs to authenticate to

reach a target system for injecting an attack with possible

metrics as single instances or multiple instances [18].
AccessVector describes the possibilities where an attacker can

launch an attack with metrics as local, adjacent network or

Network [18].

f(Impact) = 0 if Impact=0; otherwise value of f(Impact)

would be 1.176 (4)

 As (4) depend on the value of Impact that is calculated above.

Vulnerabilities with a base score are categorized as:

 Critical(7.0-10.0)

 Major(4.0 – 6.9)

 Minor(0-3.9)

V.RESULT AND DISCUSSION

We tested a SAML based Single Sign-On authentication

system and proposed mechanism to detecting the severity of

vulnerability by deploying in following computing

environment.

- Computer environment: Windows 8

- Platform: JAVA

- Web server: Apache-7.0.35

- Installation: OpenSAML v2.0

- Tool : CVSS

Our main aim was to design a secure SAML based Single

Sign-on authentication for traffic that routes for accessing

external hosted web applications. As we discussed earlier also

that SAML is an XML based framework designed for making

security statements about user in form of SAML request and

response assertions. Moreover XML framework is more prone

to vulnerabilities due to its properties of extension elements

which in turn lead to XSW attacks. We perform such attack in

our framework and make use of CVSS base score [18] for

calculating the severity of the vulnerability on the basis of

metrics as defined in previous section. A suitable approach has

been applied i.e. Data tainting method to suppress such

vulnerability from our existing vulnerability and then again

use CVSS tool to check how vulnerable the system is even

after applying mitigation methods. (See fig 6)

Value of CVSS base score which is calculated when

vulnerability exists and when suppress method has been

applied on framework is:

Base score before: 6.2

Base score after: 2.7

Fig 6 indicates CVSS base score which in return define the

severity of vulnerability. In this red bar indicates score of

framework when simulation of XSW attack occurred and it is

of medium severity as defined by CVSS experts where as blue

bar indicates score of framework when method to fix such

attack has applied and it is of low severity which shows we are

successful in achieving secure Single Sign-On authentication

mechanism.

Fig. 6. CVSS Base score

VI.CONCLUSION

With the use of SAML, organizations can easily and

securely share identity based information of the user with

other web applications which are integrated with this

particular organization. User experience is improved by

getting rid of multiple usernames and passwords which in

return lower administrative costs.

297

We found occurrence of new XSW attacks even if the

web application is complying with the standard recommended

by OASIS technical team. The main reason for the possible

attack was that the applications of XML security heavily

depend on the underlying XML processing system. These

processing modules i.e. Signature validation and business

logic involved can have inconsistent views on the XML

document which may result in XSW attacks. In order to

overcome these attacks, we apply different countermeasures

after analyzing the vulnerabilities meanwhile, providing

awareness related to SSO specifications to implementers for

their specification as well as continuously patching and

improving upon their solution as new vulnerabilities are

discovered i.e. inevitable.

We can even extend this security measures for federated

identity management systems using multi-factor

authentication which may include biometric identification that

includes different biometric traits like fingerprint, face, palm

etc. By using multi-factor authentication, we can hereby

increase the security of information or resources both

internally and externally.

ACKNOWLEDGMENT

This work is done in Cyber Security Research Center (CSRC)

located at PEC University of Technology. The authors would

like to thank Government of India, Ministry of

Communications and Information Technology, Department of

Information Technology, New Delhi, for funding the Project

“Development of Cloud Based Framework for Delivering

Security as a Service”, under which this research work has

been done.

REFERENCES

[1] San-Tsai Sun, Eric Pospisil, Ildar Muslukhov, Nuray Dindar ,
Kirstie Hawkey, Konstantin Beznosov Investigating User’s
Perspective of Web Single Sign-On:Conceptual Gaps,
Alternative Design and Acceptance Model. In ACM
Transactions on Internet Technology on January 9th, 2012

[2] P. McKiernan. 2002. Addressing Online Identity: Understanding
the Microsoft Passport Service. In Information Security
Technical Report, Vol 7, No. 3 (2002) 65-80.

[3] D. Recordon and D. Reed. OpenID 2.0: a platform for
usercentric identity management. In Proceedings of the Second
ACM Workshop on Digital Identity management, Alexandria,
Virginia, USA, (2006) pp. 11–16.

[4] OASIS. Security Assertion Markup Language (SAML) v2.0
“http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=security”, April 2005.

[5] Cantor, S., Kemp, J., Philpott, R., and Maler, E. Assertions and
Protocol for the OASIS Security Assertion Markup Language
(SAML) V2.0. OASIS Standard, 15.03.2005.

[6] Cantor, S., Kemp, J., Maler, E., and Philpott, R. Profiles for the
OASIS Security Assertion Markup Language (SAML) V2.0.
OASIS Standard, 15.03.2005.

[7] Rolf Oppliger. 2004. Microsoft .NET Passport and identity
management. Information Security Technical Report, 9(1):26-
34.

[8] Rolf Oppliger. 2003. Microsoft .NET Passport: A Security
Analysis. Computer, Vol 36, No. 7 pp. 29-35.

[9] Kelly D. Lewis, James E. Lewis et al. Web Single Sign-On
Authentication using SAML. In IJCSI International Journal of
Computer Science Issues, Vol. 2, 2009

[10] OASIS Identity Federation.LibertyAlliance Project
http://www.projectliberty.org/resources/specifications.php,
2004.

[11] Internet2. Shibboleth Project http://shibboleth.internet2.edu/,
2007.

[12] J. Hodges and T. Wason. Liberty architecture overview, 2003.

[13] Jorg Schwenk, Marco Kampmann, Juraj Somorovsky, Andreas
Mayer and Meiko Jensen et al. On Breaking SAML: Be
Whoever You Want to Be.

[14] Mcintosh, M., and Austel, P. XML signature element wrapping
attacks and countermeasures in Workshop on Secure Web
Services (2005).

[15] Wang, R., Chen, S., and Wang, X. Signing Me onto Your
Accounts through Facebook and Google: a Traffic-Guided
Security Study of Commercially Deployed Single-Sign-On Web
Services. In IEEE Symposium on Security and Privacy
(Oakland), IEEE Computer Society (May 2012).

[16] Hodges, J Technical Comparison: OpenID and SAML - Draft 07
“http://identitymeme.org/doc/draft-hodges-saml-openid-
compare-07a.html” .

[17] THE Apache Software Foundation. Apache Xerces
“http://xerces.apache.org”

[18] NVD Common Vulnerability Scoring system
“http://nvd.nist.gov/cvss.cfm”

298

http://identitymeme.org/doc/draft-hodges-saml-openid-compare-07a.html
http://identitymeme.org/doc/draft-hodges-saml-openid-compare-07a.html
http://nvd.nist.gov/cvss.cfm

