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Abstract

Exact solutions of the multidimensional Liouville equation are constructed.

Let us consider the multidimensional Liouville equation

2u + λ expu = 0, (1)

where u = u(x) is a scalar function of the variable x = (x1, x2, . . . , xn+2), 2u = u11+u22−
u33 − · · · − un+2,n+2, uab = ∂2u

∂xa∂xb
; a, b = 1, 2, . . . , n + 2. The equation(1) is invariant

under the extended Poincaré algebra AP̃ (2, n), which is generated by the following vector
fields

Pa = ∂a, Jab = gacxc∂b − gbcxc∂a, D = −xa∂a + 2∂u,

where ∂a ≡ ∂
∂xa

, ∂u ≡ ∂
∂u , g11 = g22 = −g33 = · · · = −gn+2,n+2 = 1, gab = 0 when a 6= b;

a, b = 1, 2, . . . , n+2. Using subalgebras of the rank 3 of the algebra AP̃ (2, 2) in the paper
[1] the symmetry ansatzes reducing the equation (1) to ordinary differential equations are
built. With the help of the reducing equations some classes of exact solutions of equation
(1) are constructed.

In the present paper classes of exact solutions of equation (1) are constructed for
arbitrary n.

Let us consider the symmetry ansatz u = u(ω1, ω2, ω3), where ω1 = x1 − x4, ω2 =
x2

1 + x2
2−x2

3− · · · −x2
n+2, ω3 = (x1−x4)(x2−x3)−1. The ansatz reduces the equation (1)

to the equation

4ω1u12 + 4ω2u22 + 2(n + 2)u2 + λ expu = 0. (2)

Let us investigate symmetry of the equation (2).

Theorem 1 The maximal invariance algebra of the equation (2) in Lie sense is infinitely-
dimensional Lie algebra A∞(3), which is generated by such operators α1X1+α2X2+α3X3,
where
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X1 = ω1
∂

∂ω1
+ ω2

∂

∂ω2
− ∂

∂u
, X2 = ω2

∂

∂ω2
− ∂

∂u
, X3 = ω1

∂

∂ω2
,

α1, α2, α3 are arbitrary smooth functions of the variable ω3.

Let us consider the 3-dimensional subalgebra A(3) =< X1, X2, X3 > of the algebra
A∞(3) and carry out reduction of the equation (1) by 1-dimensional subalgebras of the
algebra A(3). Let L be an one-dimensional subalgebra of the algebra A(3). Then L is
conjugated to one of the following algebras: L1 =< X1 + αX2 > (α ∈ R), L2 =< X2 >,
L3 =< X1 + εX3 > (ε = ±1), L4 =< X3 >.

1) Subalgebra L1 =< X1+αX2 > (α ∈ R). The ansatz u = ϕ(ω)− lnωα+1
1 , ω = ω2ω

−α−1
1

reduces equation (2) to

4αωϕ̈ + 2(n + 2)ϕ̇ + λ expϕ = 0.

2) Subalgebra L3 =< X1+εX3 > (ε = ±1). The ansatz u = ϕ(ω)−lnω1, ω = ω2
ω1
−ε lnω1

reduces equation (2) to

−4εϕ̈ + 2nϕ̇ + λ expϕ = 0.

Now let us consider a symmetry ansatz u = u(x1 − xn+2, x2, . . . , xn+1). The ansatz
reduces the equation (1) to the equation

∂2u

∂x2
2

− ∂2u

∂x2
3

− · · · − ∂2u

∂x2
n+1

+ λ expu = 0. (3)

Theorem 2 Algebra of invariance of the equation (3) in Lie sense is infinitely-dimensio-
nal Lie algebra AP∞(1, n− 1) which is generated by such operators

α2P2 + · · ·+ αn+1Pn+1 +
∑
a,b

βa,bJa,b + γD,

where

Pa ≡ ∂
∂xa

, J2a = x2
∂

∂xa
+ xa

∂
∂x2

,

Jab = xb
∂

∂xa
− xa

∂
∂xb

, D = −x2
∂

∂x2
− · · · − xn+1

∂
∂xn+1

+ 2 ∂
∂u,

a, b = 3, . . . , n + 1; α2, . . . , αn+1, βa,b, γ are arbitrary smooth functions of the variable
x1 − xn+2.

Let us carry out reduction of the equation (3) on subalgebras of the rank n− 1 of the
algebra AP (1, n − 1) =< P2, . . . , Pn+1, J23, . . . , Jn,n+1, D >. We write out the ansatzes
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corresponding to such subalgebras.

1) u = ϕ(ω)− 2 ln(x1 + xn+1), ω = x1
xn+1

;

2) u = ϕ(ω) + 2α
1− α ln(x1 + xn+1),

ω = (1 + α) ln(x1 + xn+1) + (1− α) ln(x1 − xn+1);

3) u = ϕ(ω)− ln(x1 − xn+1), ω = x1 + xn+1 + ln(x1 − xn+1);

4) u = ϕ(ω)− 2 ln x1, ω = x2
3 + · · ·+ x2

m

x2
2

, m = 3, . . . , n + 1;

5) u = ϕ(ω)− 2 ln(x1 − xn+1), ω =
(x2

3 − · · · − x2
m − x2

n+1)
1/2

x2 − xn+1
, m = 3, . . . , n;

6) u = − ln
[
−x2

1 + x1 − xn+1
x1 − xn+1 + λ3

x2
3 + x1 − xn+1

x1 − xn+1 + λt
x2

t + x2
n+1

]
+ ϕ(ω),

where t ≤ n, λ3, . . . , λt ∈ R.
Using solutions of reduced equations we find exact solutions of the Liouville equation.

Let us adduce some of them

u = − ln
{
− 1

2mθ

[
x2 − xn+1 − θ(x2

3 − · · · − x2
m − x2

n+1)
]}

,

where θ is an arbitrary twice differentiable function of the variable x1−xn+2; m = 3, . . . , n;

u = ln
1 + ω

ω + λ3
+ · · ·+ ω

ω + λt

λ
[
−x2

2 + ω
ω + λ3

x2
3 + · · ·+ ω

ω + λt
x2

t + x2
n+1

] ,

where ω = x2 − xn+1, λ3, . . . , λt are arbitrary functions of the variable x1 − xn+2; t ≤ n.
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