Reduction and Some Exact Solutions of the Multidimensional Liouville Equation

I.I. YURYK

Ukrainian State University of Food Technologies, 68 Volodymyrs'ka Street, Kyïv 33, Ukraïna

Abstract

Exact solutions of the multidimensional Liouville equation are constructed.

Let us consider the multidimensional Liouville equation

$$
\begin{equation*}
\square u+\lambda \exp u=0 \tag{1}
\end{equation*}
$$

where $u=u(x)$ is a scalar function of the variable $x=\left(x_{1}, x_{2}, \ldots, x_{n+2}\right)$, $\square u=u_{11}+u_{22}-$ $u_{33}-\cdots-u_{n+2, n+2}, u_{a b}=\frac{\partial^{2} u}{\partial x_{a} \partial x_{b}} ; a, b=1,2, \ldots, n+2$. The equation(1) is invariant under the extended Poincaré algebra $A \tilde{P}(2, n)$, which is generated by the following vector fields

$$
P_{a}=\partial_{a}, \quad J_{a b}=g^{a c} x_{c} \partial_{b}-g^{b c} x_{c} \partial_{a}, \quad D=-x^{a} \partial_{a}+2 \partial_{u},
$$

where $\partial_{a} \equiv \frac{\partial}{\partial x_{a}}, \partial_{u} \equiv \frac{\partial}{\partial u}, g_{11}=g_{22}=-g_{33}=\cdots=-g_{n+2, n+2}=1, g_{a b}=0$ when $a \neq b$; $a, b=1,2, \ldots, n+2$. Using subalgebras of the rank 3 of the algebra $A \tilde{P}(2,2)$ in the paper [1] the symmetry ansatzes reducing the equation (1) to ordinary differential equations are built. With the help of the reducing equations some classes of exact solutions of equation (1) are constructed.

In the present paper classes of exact solutions of equation (1) are constructed for arbitrary n.

Let us consider the symmetry ansatz $u=u\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$, where $\omega_{1}=x_{1}-x_{4}, \omega_{2}=$ $x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-\cdots-x_{n+2}^{2}, \omega_{3}=\left(x_{1}-x_{4}\right)\left(x_{2}-x_{3}\right)^{-1}$. The ansatz reduces the equation (1) to the equation

$$
\begin{equation*}
4 \omega_{1} u_{12}+4 \omega_{2} u_{22}+2(n+2) u_{2}+\lambda \exp u=0 . \tag{2}
\end{equation*}
$$

Let us investigate symmetry of the equation (2).
Theorem 1 The maximal invariance algebra of the equation (2) in Lie sense is infinitelydimensional Lie algebra $A_{\infty}(3)$, which is generated by such operators $\alpha_{1} X_{1}+\alpha_{2} X_{2}+\alpha_{3} X_{3}$, where

$$
X_{1}=\omega_{1} \frac{\partial}{\partial \omega_{1}}+\omega_{2} \frac{\partial}{\partial \omega_{2}}-\frac{\partial}{\partial u}, \quad X_{2}=\omega_{2} \frac{\partial}{\partial \omega_{2}}-\frac{\partial}{\partial u}, \quad X_{3}=\omega_{1} \frac{\partial}{\partial \omega_{2}}
$$

$\alpha_{1}, \alpha_{2}, \alpha_{3}$ are arbitrary smooth functions of the variable ω_{3}.

Let us consider the 3 -dimensional subalgebra $A(3)=<X_{1}, X_{2}, X_{3}>$ of the algebra $A_{\infty}(3)$ and carry out reduction of the equation (1) by 1-dimensional subalgebras of the algebra $A(3)$. Let L be an one-dimensional subalgebra of the algebra $A(3)$. Then L is conjugated to one of the following algebras: $L_{1}=<X_{1}+\alpha X_{2}>(\alpha \in R), L_{2}=<X_{2}>$, $L_{3}=<X_{1}+\varepsilon X_{3}>(\varepsilon= \pm 1), L_{4}=<X_{3}>$.

1) Subalgebra $L_{1}=<X_{1}+\alpha X_{2}>(\alpha \in R)$. The ansatz $u=\varphi(\omega)-\ln \omega_{1}^{\alpha+1}, \omega=\omega_{2} \omega_{1}^{-\alpha-1}$ reduces equation (2) to

$$
4 \alpha \omega \ddot{\varphi}+2(n+2) \dot{\varphi}+\lambda \exp \varphi=0
$$

2) Subalgebra $L_{3}=<X_{1}+\varepsilon X_{3}>(\varepsilon= \pm 1)$. The ansatz $u=\varphi(\omega)-\ln \omega_{1}, \omega=\frac{\omega_{2}}{\omega_{1}}-\varepsilon \ln \omega_{1}$ reduces equation (2) to

$$
-4 \varepsilon \ddot{\varphi}+2 n \dot{\varphi}+\lambda \exp \varphi=0
$$

Now let us consider a symmetry ansatz $u=u\left(x_{1}-x_{n+2}, x_{2}, \ldots, x_{n+1}\right)$. The ansatz reduces the equation (1) to the equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x_{2}^{2}}-\frac{\partial^{2} u}{\partial x_{3}^{2}}-\cdots-\frac{\partial^{2} u}{\partial x_{n+1}^{2}}+\lambda \exp u=0 \tag{3}
\end{equation*}
$$

Theorem 2 Algebra of invariance of the equation (3) in Lie sense is infinitely-dimensional Lie algebra $A P_{\infty}(1, n-1)$ which is generated by such operators

$$
\alpha_{2} P_{2}+\cdots+\alpha_{n+1} P_{n+1}+\sum_{a, b} \beta_{a, b} J_{a, b}+\gamma D
$$

where

$$
\begin{aligned}
P_{a} & \equiv \frac{\partial}{\partial x_{a}}, \quad J_{2 a}=x_{2} \frac{\partial}{\partial x_{a}}+x_{a} \frac{\partial}{\partial x_{2}}, \\
J_{a b} & =x_{b} \frac{\partial}{\partial x_{a}}-x_{a} \frac{\partial}{\partial x_{b}}, \quad D=-x_{2} \frac{\partial}{\partial x_{2}}-\cdots-x_{n+1} \frac{\partial}{\partial x_{n+1}}+2 \frac{\partial}{\partial u},
\end{aligned}
$$

$a, b=3, \ldots, n+1 ; \alpha_{2}, \ldots, \alpha_{n+1}, \beta_{a, b}, \gamma$ are arbitrary smooth functions of the variable $x_{1}-x_{n+2}$.

Let us carry out reduction of the equation (3) on subalgebras of the rank $n-1$ of the algebra $A P(1, n-1)=<P_{2}, \ldots, P_{n+1}, J_{23}, \ldots, J_{n, n+1}, D>$. We write out the ansatzes
corresponding to such subalgebras.

1) $u=\varphi(\omega)-2 \ln \left(x_{1}+x_{n+1}\right), \omega=\frac{x_{1}}{x_{n+1}}$;
2) $u=\varphi(\omega)+\frac{2 \alpha}{1-\alpha} \ln \left(x_{1}+x_{n+1}\right)$,

$$
\omega=(1+\alpha) \ln \left(x_{1}+x_{n+1}\right)+(1-\alpha) \ln \left(x_{1}-x_{n+1}\right)
$$

3) $u=\varphi(\omega)-\ln \left(x_{1}-x_{n+1}\right), \quad \omega=x_{1}+x_{n+1}+\ln \left(x_{1}-x_{n+1}\right)$;
4) $u=\varphi(\omega)-2 \ln x_{1}, \quad \omega=\frac{x_{3}^{2}+\cdots+x_{m}^{2}}{x_{2}^{2}}, \quad m=3, \ldots, n+1$;
5) $\quad u=\varphi(\omega)-2 \ln \left(x_{1}-x_{n+1}\right), \omega=\frac{\left(x_{3}^{2}-\cdots-x_{m}^{2}-x_{n+1}^{2}\right)^{1 / 2}}{x_{2}-x_{n+1}}, m=3, \ldots, n$;
6) $u=-\ln \left[-x_{1}^{2}+\frac{x_{1}-x_{n+1}}{x_{1}-x_{n+1}+\lambda_{3}} x_{3}^{2}+\frac{x_{1}-x_{n+1}}{x_{1}-x_{n+1}+\lambda_{t}} x_{t}^{2}+x_{n+1}^{2}\right]+\varphi(\omega)$,
where $t \leq n, \lambda_{3}, \ldots, \lambda_{t} \in R$.
Using solutions of reduced equations we find exact solutions of the Liouville equation. Let us adduce some of them

$$
u=-\ln \left\{-\frac{1}{2 m \theta}\left[x_{2}-x_{n+1}-\theta\left(x_{3}^{2}-\cdots-x_{m}^{2}-x_{n+1}^{2}\right)\right]\right\}
$$

where θ is an arbitrary twice differentiable function of the variable $x_{1}-x_{n+2} ; m=3, \ldots, n$;

$$
u=\ln \frac{1+\frac{\omega}{\omega+\lambda_{3}}+\cdots+\frac{\omega}{\omega+\lambda_{t}}}{\lambda\left[-x_{2}^{2}+\frac{\omega}{\omega+\lambda_{3}} x_{3}^{2}+\cdots+\frac{\omega}{\omega+\lambda_{t}} x_{t}^{2}+x_{n+1}^{2}\right]},
$$

where $\omega=x_{2}-x_{n+1}, \lambda_{3}, \ldots, \lambda_{t}$ are arbitrary functions of the variable $x_{1}-x_{n+2} ; t \leq n$.

References

[1] Fushchych W.I., Barannyk L.F. and Barannyk A.F., Subgroup Analysis of the Galilei and Poincaré Groups and Reduction of Nonlinear Equations, Kiev, Naukova Dumka, 1991, 304p.

