
Dynamic Constraint Definition Method in Cloud Databases

Hequn Xian, Jing Li, and Xiuqing Lu

College of Information Engineering, Qingdao University

Qingdao, China

Institute of Information Engineering, Chinese Academy of Sciences

Beijing, China

E-mail: xianhq@126.com

Abstract— A dynamic database constraint definition method is

presented based on metadata design, which facilitates client-

side configuration of cloud database schema and consistency

definition. The proposed scheme simplifies the conceptual

schema designing process for cloud databases and offers more

data administrative privileges to the user. It also enables the

user to create new data tables and generate standard data

access interfaces dynamically. A typical application of our

method is introduced which solve the problem of dynamic

factor management in a teaching management database. The

implementation and application show that our method is

effective and applicable.

Keywords- dynamic constraint; cloud database; metadata;

user-defined constraint

I. INTRODUCTION

Traditional database application development involves
requirements analysis, conceptual model design, logical
model design, development, testing and other steps. The
predefined database structure approach is widely used. For
applications based on cloud databases, the relational schema
is pre-designed, the applications can only perform operations
such as record adding, deleting and updating. There is no
way for the users to change the database schema without
changing the codes and deploying them to the cloud again.
Despite of its advantages like high consistency and fine
formalization, such predefined static manner cannot meet the
need for new data constraint definition or special business
logic changing, which incur even more cost in a cloud
database context. Therefore, a dynamic database schema
designing method, allowing users to change the relational
schema and define data constraints after deployment, can
enhance the flexibility and scalability of the database system.
Various application requirements can be fulfilled without
post deployment development, which can only be achieved
via dynamic design techniques.

In this paper, we devised a metadata based design
method, which realizes dynamic constraint definition without
executing traditional SQL statements against the cloud
database server. Data administrators can define multi-value
constraints with user interfaces and apply them to columns
when they create new tables.

In the following sections of this paper, we present the
scheme of database design with dynamic constraint
definition and automatic data access interface generation.
Then we introduce an application of our techniques in a
teaching management database system.

II. RELATED WORKS

When designing the conceptual schema of a future
information system, it is crucial to define a set of constraints
that will guarantee the consistency of the subsequent
database once it is implemented and operational [1]. Ravi et
al. present an interactive way of eliciting database constraints.
Luca et al. study the problem of security and consistency for
cloud databases. They propose an alternative architecture
that eliminates the need for a trusted intermediate server [2].
In the field of dynamic databases, Sergey introduces a new
paradigm with virtualization techniques [3]. Zhao et al.
apply dynamic database techniques to web mapping service
in the Internet [4]. Dynamic database design techniques are
also used in genetic information processing [5]. Ralf et al.
study the application of dynamic database design in mobile
applications [6]. Peter et al. identify the problem of entity
resolution as the process of matching records, they propose
an approach that adaptively adjusts similarities between
records depending upon the values of the records’ attributes
and the time differences between records [7]. The problem of
auditing inference based disclosures in dynamic databases is
studied in [8], a sound and complete algorithm to determine
a suspicious query set for a given domain knowledge is
presented. Peter et al. address the problem of resource
discovery model in multi-provider cloud databases. A
software abstraction layer is used to discover the most
appropriate infrastructure resources for a given application
by applying a two-phase constraints-based approach to a
multi-provider cloud environment [9].

III. DYNAMIC CONSTRAINT DEFINITION

In a typical information management system based on
cloud databases, privileges are usually categorized into
several roles. The goal of our design is to allow users with
data administrative privileges to dynamically define database
schema, including creating new tables and data access
interfaces, so that users with ordinary data access privileges
can read and edit tuples in the dynamically created tables.
Constraints are needed to restrict the values that the users are
allowed to update to a certain column of tuples.

In a traditional database application design, creating a
constraint requires SQL statement execution. In the cloud
database scenario, it is inappropriate even for the
administrative users to execute SQL statements directly to
create tables and to enforce constraints. To access data in a
dynamically created table, user interfaces are needed, which
should be generated with the table accordingly.

International Workshop on Cloud Computing and Information Security (CCIS 2013)

© 2013. The authors - Published by Atlantis Press 324

Our design replaces the traditional constraint definition
method with a dynamic approach for cloud databases. We
devise a set of pre-defined metadata tables to record the
information about dynamically created tables, available
constraints and the interrelation between columns and
constraints.

Three metadata tables are involved in our scheme as
shown below.

TABLE I. METADATA RELATION FOR USER-DEFINED RELATIONS

Column Data Type Description

MRID Int32 Relation ID

MRalias Nvarchar(20) User alias

MRcolumn Int32 Number of col

MRdate Datetime Creation time

MRnote Nvarchar(50) Other description

In table I, each tuple represents a dynamically created

table. MRID is a unique auto-increasing value assigned to
each table, which is also used to construct the table name
when the system performs CREATE TABLE statement.
MRalias is a user-defined meaningful alias for the table.
MRcolumn denotes the number of columns in the table.
MRdate is the date on which the table is created. Further
description about the table is recorded in MRnote.

TABLE II. METADATA RELATION FOR USER-DEFINED ATTRIBUTES

Column Data type Description

MAID Int32 ColumnID

MAalias NVarchar(20) User alias

MRID Int32 Owner relationID

MAConstraint Int32 Constrain ID

MAnote NVarchar(50) Other description

In table II, each tuple represents a column in a

dynamically created table. MAID is a unique auto-increasing
value for every column. MAalias is the column’s user-
defined alias. MRID is the foreign key referring to the table
that the column resides. A zero value in the MAConstraint
field indicates no constraint for the column, and a non-zero
value means there is a constraint for the column when users
edit the values in the tuples.

TABLE III. METADATA RELATION FOR USER-DEFINED CONSTRAINT

Column Data type Description

MCID Int32 Constrain value ID

MCalias NVarchar(20) Constrain value alias

MAConstraint Int32 Constrain group ID

MCValue NVarchar(50) Other description

Tuples in table III represent constraint values, which are
divided into groups by their values in the MAConstraint
attribute. A constraint consists of a group of values, and can
be bound to one or more columns in any dynamically created
tables. Setting a tuple’s value of MAConstraint in table II to
a certain MAConstraint value in table III means that only the
chosen constraint values are valid for that column. However,
administrative users can configure the values in any
constraint group, resulting in an instantaneous enforcement
of valid values for all the columns bound with the constraint
group.

IV. IMPLEMENTATION AND APPLICATION

We implement the method with Microsoft .NET
framework and embedded it in an actual cloud database
application, which is a teaching management database
system for a university. The teaching management system
consists of six primary modules, which are system
configuration, status data collection, database maintenance,
factor management, assessment and data query. The core
module is data collection module which facilitates the
comprehensive assessment of teaching activities in all
teaching unit. The assessment is base on a set of quantified
factors. The summary of all the factors multiplied by their
corresponding weight is the final score of each teaching unit.
The choosing and configuration of the factors embraces the
principles and emphasis of teaching management.

 There are more than 50 factors in the system for now,
divided into 4 categories. Each factor has its own quantifying
method and calculation formula. It may be a calculated result
from many other factors or from basic data tables. With the
development of teaching management and the adjustment of
long term goals of the university, the factors might inevitably
be reconfigured. New factors are bound to be added, and
new tables will be created. In that case, the database schema
and all the pre-define application logic will have to be
changed, resulting in a post deployment development, which
would introduce cost in both human resource and financial
resource.

Our method solves the problem of factor management by
allowing administrative users to create new factor tables or
base data tables. Constraints can be defined and applied at
any point in the process. Ordinary users with only data
access privileges can read and edit data in those tables.

The system is developed with Microsoft Visual Studio,
and the code is written in ASP.NET with C# as the script
language. We implement the database design in Microsoft
SQL Server 2008 Express.

The name of the dynamically created table is generated
from the maximum value of table IDs in the metadata,
preceded by a short string with two characters to conform to
the naming regulation. In the teaching management database,
the preceding string “MR” is used for a factor information
table, and “DR” is used for a base data table.

The graphic user interface for creating new tables and
attaching constraints is designed as shown in Figure 1. An
administrative user can add as many columns to the
candidate column list as he wants, and column names can be
defined at will.

325

Figure 1. The user interface for dynamic relation creation.

Columns can be removed from the candidate column list
before the final confirmation of the operation, which is
triggered as the “generate” button is clicked. While adding
new columns, the user can attach some existing constraint to
the column by selecting the group from the constraint list in
the form. Constraint values are listed as the group is selected.

When a new table is created, its corresponding data
access interfaces are automatically generated. The column
with user defined constraint is generated as a template field
in a grid-view component. When a tuple is edited, the
template field shows as a drop down list component. The
optional values in the drop down list are bound to the values
belonging to the specific value group in the metadata table.
So, the user cannot input other arbitrary values into the tuple,
they can only choose one of those optional values to fill the
column. To generate the column list, a list box component in
the GUI is traversed, which holds the candidate columns the
user wants to build into the new table. Figure 2 shows some
of the C# codes for the dynamic data definition process.

DataTable dt = new DataTable();

SqlDataAdapter da = new SqlDataAdapter("select

max(MRID) from MTI ", strConnection);

da.Fill(dt);

string sqlcmd = "create table MR" +

dt.Rows[0][0].ToString()+ "(id int identity primary key";

for (int i = 0; i < ListBox1.Items.Count; i++)

 sqlcmd = sqlcmd + ","+ListBox1.Items[i].Text+"

varchar(50)";

sqlcmd = sqlcmd + ")";

SqlCommand comm = new SqlCommand();

comm.CommandText = sqlcmd ;

comm.ExecuteNonQuery();

Figure 2. Key codes for dynamic data definition.

After a table is created, a tuple is inserted into the
metadata to record the information of the newly generated
table. The value of attribute “MRalias” depends on the user’s
input. The value of attribute “MRcolumn” is set to be the
actual number of columns the user enlisted in the GUI. The
value of attribute “MRdate” is automatically filled with
current date and time. The value of attribute “MRnote” is
inputted by the user for further description of the table.
Figure 3 shows some of the key codes.

comm.CommandText = "INSERT INTO MTI(MRalias,

MRcolumn, MRdate, MRnote) values(@MRalias,

@MRcolumn, @MRdate, @MRnote)";

comm.Parameters.AddWithValue("@MRalias ",

"MR"+Convert.ToString(MAXID+1));

comm.ExecuteNonQuery();

Figure 3. Key codes for metadata update.

 To browse or to update tuples in a dynamically create
table, users can choose the table’s name from a drop down
list component. A shared grid view component is designed to
show and edit the tuples in the selected table. Figure 4 shows
some of the xml formatted codes in the automatically
generated data access interfaces that enforce the value
constraint on the client side.

Figure 4. Key codes for dynamic generated data access interface.

Among the codes in the above figure, the union operation
of a null value to the available constraint values is
indispensible. Because the valid values in a constraint group
do not include any null value, which is rather common in
most of the newly created tables. Exceptions will be raised if
the null value is not taken into consideration when enforcing
a constraint.

Compare to our method of dynamic approach, the former
design belongs to the static design approach, which involves
several pre-defined empty table templates. These templates
are taken as raw materials for new table definition. The
defect is obvious, that the designer cannot foretell how many
columns are there in the newly defined tables. The preserved
empty templates are waste of system resources, and they
may cause difficulties in database management. So, unlike
static database design approaches, our design grants the

<asp:TemplateField HeaderText="col3">
<EditItemTemplate>
<asp:DropDownList ID="DDL1" runat="server"
selectedValue='<%# Bind("col3")%>'
DataSourceID="SqlDS1" DataTextField="MCValue"
DataValueField=" MCValue "></asp:DropDownList>
<asp:SqlDataSource ID="SqlDS2" runat="server"
ConnectionString="<%$ ConStr:ConnectionString%>"
SelectCommand="SELECT [MCValue] FROM [MTIII]
where [MAConstraint]=4 union select NULL from
[TblIII]"></asp:SqlDataSource> </EditItemTemplate>
<ItemTemplate><%# Eval("col3") %></ItemTemplate>
</asp:TemplateField>

326

privileges of relation schema editing to the application user
(only one or two administrative users, of course). Thus,
dynamic database schema altering can be carried out without
any post deployment develop or any coding task.

V. CONCLUSIONS

In this paper, we propose a cloud database design scheme
with dynamic constraint definition and automatic data access
interface generation. By metadata design, we give the
application users the ability to create new tables and to
define arbitrary constraints on columns of the tables. When
users edit tuples in those newly defined tables, our
dynamically generated data access interfaces will prevent the
users from entering invalid values according to the
corresponding constraints. We apply the proposed method in
a teaching management database system and solve the
problem of dynamic factor adding and managing. Our design
not only fulfills the need of the application requirement, but
also improves the flexibility and usability of the system.
Common short comings of dynamic database design such as
poor formalization and management complexity are avoided
in the presented database system. The successful
deployment and operation of the system demonstrate the
correctness and advantage of our design, which facilitates the
flexible processing of teaching management information.

REFERENCES

[1] Ravi Ramdoyal, Jean-Luc Hainaut, Interactively Eliciting Database
Constraints and Dependencies, Advanced Information Systems
Engineering, Lecture Notes in Computer Science Volume 6741, 2011,
pp 184-198

[2] Luca Ferretti, Michele Colajanni, Mirco Marchetti, Supporting
Security and Consistency for Cloud Database. Lecture Notes in
Computer Science Volume 7672, 2012, pp 179-193

[3] Sergey Savinov,Khuzaima Daudjee.Dynamic database replica
provisioning through virtualization.In Proc. of ACM CloudDB '10.
New York, NY, USA:ACM,2010: 41-46

[4] Zhao, Fujun,Zhang, Jingfa,Cao, Dai-Yong.Dynamic database
connection and dynamic web map service for internet mapping. In
Proc of IGARSS '05. New York, NY, USA:IEEE
International,2005:3167 – 3169

[5] Swertz, Morris.Towards dynamic database infrastructures for mouse
genetics. In Proc of BIBE 2008. New York, NY, USA:IEEE
International,2008:1 –7

[6] Ralf Mühlberger.Dynamic database generation for mobile
applications. In Proc of ER 2002 Workshops, ECDM, MobIMod,
IWCMQ, and eCOMO. Berlin , Germany:Springer Berlin
Heidelberg,2003:195-204

[7] Peter Christen, Ross W. Gayler . Adaptive temporal entity resolution
on dynamic databases. Advances in Knowledge Discovery and Data
Mining. Lecture Notes in Computer Science Volume 7819, 2013, pp
558-569.

[8] Vikram Goyal, S. K. Gupta, Manish Singh, Anand Gupta. Auditing
inference based disclosures in dynamic databases. Secure Data
Management Lecture Notes in Computer Science Volume 5159, 2008,
pp 67-81

[9] Peter Wright, Yih Leong Sun, Terence Harmer, Anthony Keenan,
Alan Stewart, Ronald Perrott. A constraints-based resource discovery
model for multi-provider cloud environments. Journal of Cloud
Computing.June 2012, 1:6,Open Access

327

