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Abstract

A fully braided analog of the Faddeev-Reshetikhin-Takhtajan construction of a qua-
sitriangular bialgebra A(X, R) is proposed. For a given pairing C, the factor-algebra
A(X, R;C) is a dual quantum braided group. Corresponding inhomogeneous quantum
group is obtained as a result of generalized bosonization. Construction of a first order
bicovariant differential calculus is proposed.

1 Introduction and preliminaries

Hopf algebras in braided categories (braided groups) have been extensively studied over
the last few years and play an important role in q-deformed physics and mathematics
[17],[18]. Examples, applications and the basic theory of braided groups have been intro-
duced and developed by Majid. Some similar concepts arise independently in works of
Lyubashenko inspired by results on conformal field theory. Crossed modules over braided
Hopf algebras were introduced and studied in [3] and provide a useful technique for inves-
tigation of braided Hopf algebras. In particular, crossed product of braided Hopf algebras
and generalized bosonization for quantum braided groups are defined in [3]. The theory
of Hopf bimodules in braided categories is developed in [4] on grounds of [3]. Application
of this theory is an analog of the Woronowicz construction of (bicovariant) differential
calculi [20] developed in [5] for the case of braided Hopf algebras and quantum braided
groups. Quantum braided group defined by Majid [14, 15] is a natural generalization of
Drinfel’d’s concept of (ordinary) quantum group (quasitriangular Hopf algebra) [7]. Basic
examples of coquasitriangular bialgebras A(R) are obtained as a result of the Faddeev-
Reshetikhin-Takhtajan construction [8] applied to an arbitrary R-matrix. Analog of the
FRT-construction for anyonic quantum groups is described in [19]. Majid proposed an-
other construction of braided bialgebra B(R) which can be obtained as a transmutation
[14] of A(R). Algebra A(R,Z) defined in [10] generalizes both A(R) and B(R). In this
paper we describe a fully braided analog of a FRT-construction of a quasitriangular bial-
gebra A(X, R), where X is an object of an Abelian braided monoidal category C and
R : X⊗X → X⊗X solution of the braid equation. This construction covers all mentioned
above and can be considered as a coordinate-free version of [10]. For a given pairing C
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we define a factor-algebra A(X, R;C) which is a dual quantum braided group. This is an
analog of construction of quantum simple Lie groups of types B,C,D in [8]. Majid’s
definition of braided vectors V(R) is simply reformulated to our more abstract setting.
In particular, our algebra V(X, R) is also a quantum braided group in the category of
comodules over A(X, R). Quantized analogs of inhomogeneous linear groups are studied
in many papers (see [1, 6] and references therein). Generalized bosonization construction
[3] allows us to define the quantum braided group A(X, R) n V(X, R). We propose
construction of a first order bicovariant differential calculus on dual quantum braided
group A related with any comodule X over A. In our special case A = A(X, R), this is a
generalization of construction [12].

In the rest of this part we give necessary preliminary results. The main results of the
paper are presented in the second part.

1.1 We will suppose that C is an Abelian and braided (monoidal) category with tensor
product ⊗, unit object 1 and braiding Ψ (without loss of generality by Mac Lane’s coher-
ence theorem we will assume that underlying monoidal category is strict, i.e., the functors
⊗ ( ⊗ ) and ( ⊗ ) ⊗ coincide and 1 ⊗ X = X = X ⊗ 1). Compatibility conditions

between tensor product and Abelian structure are the following [5]: functors (−)⊗X and
X⊗(−) are right exact for any object X (this assumption is true if the category is closed);

for any epimorphisms Xi
fi→ Yi, i = 1, 2, the diagram

X1 ⊗X2
X1⊗f2−→ X1 ⊗ Y2

f1⊗X2 ↓ ↓f1⊗Y2

Y1 ⊗X2
Y1⊗f2−→ Y1 ⊗ Y2

(1)

is push-out (the right-down part is a colimit of the left-up part). In this case there ex-
ist well-behaviored constructions of factor-algebra (coalgebra, bialgebra, Hopf algebra)
by ideal (coideal, biideal, Hopf ideal). One can define an algebra by generator and rela-
tions. We mean under ’the ideal generated by relations f1 = f2 : X → A ’ the subobject
Im (µ ◦ (µ⊗A) ◦ (A⊗ (f1 − f2)⊗A)) of algebra A.

1.2 We will work with graded and filtered algebras in C. A (IN -)graded algebra A means
a collection of objects Ak, k ∈ C, multiplications mi,j : Ai ⊗ Aj → Ai+j satisfying
associativity conditions and unit η : 1 → A0. A (IN -)filtered algebra A means a collection
of objects A(k), k ∈ C, such that A(i) is a subobject of A(j) if i < j, multiplications
m(i),(j) : A(i) ⊗ A(j) → A(i+j) satisfying conditions of associativity and compatibility
with restrictions on subobjects, and unit η : 1 → A(0). For any graded algebra {Ai}
the collection {A(k) := ⊕k

i=0Ai} with natural multiplications is a filtered algebra. As
shown in [5], graded or filtered algebra can be considered as a usual algebra in a certain
category of ’graded spaces’, i.e., functors from a certain category to the category C. This
category of ’graded spaces’ is again an Abelian braided monoidal category. Similarly
graded coalgebras, bialgebras, Hopf algebras can be defined. We will say briefly that a
graded (filtered) algebra lives in the category C if its components An (A(n)) live in C. See
[5] about more details.
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Figure 1: The basic algebraic structures in a braided category

1.3 We actively use diagrammatic calculus in braided categories [15, 17] (see [3] about our
slight modifications). Morphisms Ψ and Ψ−1 are represented by under and over crossing
and algebraic information ’flows’ along braids and tangles according to functoriality and
the coherence theorem for braided categories [11]:
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Fig.1 explains our notations: An algebra in a monoidal category C is an object A
equipped with unit η = ηA : 1 → A and multiplication µ = µA : A ⊗ A → A obeying
the axioms on Fig.1. A coalgebra is object C equipped with counit ε = εA : C → 1 and
comultiplication ∆ = ∆A : A → A ⊗ A obeying the axioms of algebra turned upside-
down Finally [13],[14], a bialgebra A in a braided category C is an object in C equipped
with algebra and coalgebra structures obeying the compatibility axiom in Fig.1 which
means that ∆A is an algebra homomorphism. A Hopf algebra A in a braided category
C (braided group or braided Hopf algebra) is a bialgebra in C with antipode S : A → A
which is convolution-inverse to the identical map (the last identity in Fig.1). Axioms for
(co-)module X over a (co-)algebra A are obtained by ”polarization” of the (co-)algebra
axioms.

If C is a braided category, we will denote by C the same category with the same tensor
product and with inverse braiding Ψ−1. For any algebra (resp., coalgebra) A in C, we will
always consider the opposite algebra (Aop, µAop := µA ◦Ψ−1) (resp., the opposite coalgebra
(Aop,∆Aop := Ψ−1 ◦ ∆A) as an object of the category C. In particular, (Aop)op = A. If
A is a bialgebra in C, then Aop and Aop are bialgebras in C (cf. [17]). Antipode S− for
Aop (or, the same, for Aop) is called skew antipode and equals S−1 if both S and S− exist.
Majid [17] derived from Hopf algebra axioms that antipode SA is a bialgebra morphism
(Aop)op → A (or A → (Aop)op) in C.

1.4 For objects X, Y of a monoidal category C we will call any morphism

∪ = ∪X,Y : X ⊗ Y → 1 ( resp. ∩ = ∩Y,X : 1 → Y ⊗X ) (3)

a pairing between X, Y (resp., copairing between Y, X). Duality between X and Y is both
pairing and copairing (3) obeying the identities in Fig.2a. In this case, X is called left
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Figure 2: Duals and pairings.

dual to Y (resp., Y is called right dual to X) and we will write X = ∨Y, Y = X∨. Dual
arrow f∨ is defined by one of the two equivalent conditions in Fig.2b. In this way a
braided monoidal functor ( )∨ : C → Cop

op can be defined if X∨ exists for each X ∈ Obj(C).
Without loss of generality by coherence theorem we shall assume that ( )∨ is a strict
monoidal functor: (X⊗Y )∨ = Y ∨⊗X∨, (f ⊗ g)∨ = g∨⊗ f∨. Pairing ρ between X and Y
extends to pairing between X⊗n and Y ⊗n defined by the diagram in Fig.2c. We say that
arrows f : X⊗m → X⊗n and g : Y ⊗n → Y ⊗m are ρ-dual if ρ ◦ (f ⊗Y ⊗n) = ρ ◦ (X⊗n⊗ g) .

Let A and H be bialgebras in a braided category C. Morphism ρ : A⊗H → 1 is called
a bialgebra pairing if an algebra (resp., coalgebra) structure on A and coalgebra (resp.
algebra) structure on H are ρ-dual. Convolution product ’·’ and ’the second’ product ’̃·’
for ρ, ρ′ ∈ HomC(X ⊗ Y, 1) are defined in Fig.2d,e. We denote by ρ−, ρ∼ corresponding
inverses to ρ. Let ρ := ρ− ◦Ψ−1. If A or H has (skew) antipode, then ρ∼ (resp., ρ−) exists
and

ρ ◦ (SA ⊗H) = ρ∼ = ρ ◦ (A⊗ SH) ρ ◦ (S−
A ⊗H) = ρ− = ρ ◦ (A⊗ S−

H) (4)

If ρ− or ρ∼ exists, then ρ-duality between multiplications and comultiplications implies ρ-
duality between units and counits. If (A,H, ρ) is bialgebra pairing in C, then (Aop,Hop, ρ

−),
(Aop,Hop, ρ∼), (Hop, Aop, ρ) are bialgebra pairings in C.

1.5 Quantum braided groups in a braided category were introduced in [14] and basic theory
was developed there. The following are input-output reversed variants of definitions from
[14] in a slightly modified form [3] suitable for our use.

A coquasitriangular bialgebra in a braided category C is a pair of bialgebras A in C
and A in C with the same underlying coalgebra (µ and µ are multiplications in A and A
respectively), and convolution invertible bialgebra pairing (coquasitriangular structure) ρ :
A

op⊗A → 1, satisfying the condition in Fig.3a. (It follows directly from the definition that
units for A and for A are the same.) A dual quantum braided group or a coquasitriangular
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Figure 3:

Hopf algebra in C is a coquasitriangular bialgebra such that A and A have antipodes S
and S, respectively. (In this case ρ− = ρ ◦ (S ⊗A) and ρ∼ = ρ ◦ (A⊗ S).)

In particular, for any bialgebra (braided group) A, the pair (A,Aop) is a coquasitrian-
gular bialgebra (dual quantum braided group) with the trivial coquasitriangular structure
ρ = ε⊗ ε.

Category CO(A,A) is a full subcategory of the category CA of right comodules with
objects X satisfying the first identity in Fig.3b. CO(A,A) is a monoidal subcategory of CA

and braided with Ψ and Ψ−1 shown in Fig.3c. We use a brief notation CO(A) for CO(A,Aop).

2 On the braided FRT-construction

2.1 Canonical epimorphism Bn → Sn of the braid group into a permutation group admits

a section Sn →̂ Bn identical on generators and unqueenly defined by the condition that
σ̂1σ2 = σ̂1σ̂2 if `(σ1σ2) = `(σ1) + `(σ2), where `(σ) is the length (of the minimal decom-
position) of σ. For any object X, the obvious action of the braid group Bn on X⊗n is
defined. We will use the same notation σ̂ for the image of the braid σ̂ ∈ Bn in EndC(X⊗n).
For k = 1, . . . , n let us denote by Sk

n ⊂ Sn the subset of n!
k!(n− k)! shuffle permutations

which preserve the order of any two elements i and j if i, j ≤ k or i, j > k. Majid in [16]
defined braided binomial coefficient as a sum of n!

k!(n− k)! braids in EndC(X⊗n) and in

particular, braided factorial as a sum of n! braids:

[
n

k
;X

]
:=

∑
σ−1∈Sk

n

σ̂, [n;X]! :=
∑

σ∈Sn

σ̂. (5)
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2.2 For any object X of a braided category C, the tensor algebra T(X) = {X⊗n}n∈N is a
graded Hopf algebra with the tensor product as multiplication, comultiplication

∆m,n :=
[
m + n

m
;X

]
: X⊗(m+n) → X⊗m ⊗X⊗n (6)

and antipode

S|X⊗n := (−1)n ◦ ρ̂n : X⊗n → X⊗n, (7)

where Sn 3 ρn : (1, 2, . . . , n) 7→ (n, n − 1, . . . , 1) and ρ̂n is a Garside element of Bn. The
bialgebra axiom turns into the Newton-Majid binomial formula [16]:

(1⊗ x + x⊗ 1)n = (∆ ◦ x)n =
n∑

k=0

[
n

k
;X

]
◦ (x⊗k ⊗ x⊗(n−k)) (8)

for any x : Z → X.
One can define two graded ideals in T(X): I = {In ⊂ X⊗n} is an ideal generated by

its ’quadratic part’ I2 := ker [2;X]! = ker(ΨX,X + id). And let I• = {I•n := ker [n;X]}.
I is nonzero iff −1 is an eigenvalue of ΨX,X . If we suppose that the multiplicity

of this eigenvalue is 1, i.e., we can choose a minimal polynomial of ΨX,X in the form
p(t) = p−1(t)(t + 1) with p−1(−1) = 1, then P−1 := p−1(ΨX,X) is an idempotent, and in
this case I2 = ker [n;X]! = im P−1.

It is easy to see that I ⊂ I•. The following example from [5] shows that, in general,
the ideal I• has ’generators’ of the power more than 2.

Example 2.2.1 Let T(X) be an algebra generated by the one–dimensional vector space
X = kx over a field k with the braiding Ψ(x⊗ x) = q(x⊗ x), q ∈ k. In this case braided
integers are ’ordinary’ q-integers: [n]q := 1 + q + . . . + qn−1 . And for q a primitive root of
1 of order n > 2: I = ∅ but I• = (x⊗n).

Propositon 2.2.1 Both I and I• are Hopf ideals in T(X). We denote by V(X) and
V•(X) corresponding factor-algebras.

For the special case of the category C built from an arbitrary R-matrix, V(X) is an
algebra of functions on ’quantum vector space’. Majid discovered a Hopf algebra structure
on this object (cf. [16] and references therein).

2.3 It is well known that any solution R = RX,X : X ⊗X → X ⊗X , X ∈ Obj(X) of the
braid equation

(X ⊗R) ◦ (R⊗X) ◦ (X ⊗R) = (R⊗X) ◦ (X ⊗R) ◦ (R⊗X) (9)

with certain invertibility conditions defines a braided structure on the monoidal subcat-
egory of C generated by the object X and its dual ∨X as described in what follows.
Morphisms RX⊗m,X⊗n are uniquely defined by the hexagon identities:

RY⊗Y ′,Z = (RY,Z ⊗ Y ′) ◦ (Y ⊗RY ′,Z) , RY,Z⊗Z′ = (Z ⊗RY,Z′) ◦ (RY,Z ⊗ Z ′) (10)

where Y, Y ′, Z, Z ′ are powers of X. And let R∨X⊗m,∨X⊗n := ∨ (
RX⊗m,X⊗n

)
. We also

suppose that there exists RX,∨X : X ⊗ ∨X → ∨X ⊗ X inverse to (∪ ⊗ X ⊗ ∨X) ◦ (∨X ⊗



ON THE BRAIDED FRT-CONSTRUCTION 201

RX,X ⊗ ∨X) ◦ (∨X ⊗X ⊗∩) Let RX⊗m,∨X⊗n be uniquely defined by the hexagon identities
(10) and R∨X⊗m,X⊗n be defined in a dual way. C(X, ∨X;R) is a subcategory of C whose
objects are tensor products of X and ∨X and morphism f : Y → Z are those from C which
’flow’ along the braids labeled by RX, and R ,X , i.e.,

RX,Z ◦ (X ⊗ f) = (f ⊗X) ◦RX,Y , RZ,X ◦ (f ⊗X) = (X ⊗ f) ◦RY,X . (11)

An analog A(X, R) of the FRT-bialgebra [8] can be obtained as a result of some
reconstruction for the monoidal functor C(X, ∨X;R) → C.

2.4 As the first step, the following lemmas allow us to define a bialgebra A(X).

Lemma 2.4.1 Let X be an object of C with (left) dual ∨X. Then ∨X⊗X can be equipped
with a coalgebra structure

∆∨X⊗X := ∨X ⊗ ∩X,∨X ⊗X , ε∨X⊗X := ∪∨X,X . (12)

X (resp. ∨X) becomes a right (resp. left) comodule over ∨X⊗X with coaction

∆X
r := ∩X,∨X ⊗X , ∆

∨X
` := ∨X ⊗ ∩X,∨X . (13)

Lemma 2.4.2 Let (A,∆A), (B, ∆B) be coalgebras in C and (X, ∆X
r ), (Y,∆Y

r ) be right
comodules over A and B, respectively. Then A⊗B is a coalgebra with comultiplication

∆A⊗B := (A⊗ΨA,B ⊗B) ◦ (∆A ⊗∆B) (14)

and X⊗Y is a right A⊗B-comodule with coaction

∆X⊗Y
r := (X ⊗ΨA,Y ⊗B) ◦ (∆X

r ⊗∆Y
r ). (15)

So, with any two objects X and Y which have left duals, we can connect the following
coalgebras: tensor product of two coalgebras (∨X ⊗X)⊗ (∨Y ⊗ Y ) and coalgebra (∨Y ⊗
∨X)⊗ (X ⊗ Y ) related with the object X ⊗ Y .

Lemma 2.4.3 Morphism

µ∨X⊗X,∨Y⊗Y := Ψ∨X⊗X,∨Y ⊗ Y : (∨X ⊗X)⊗ (∨Y ⊗ Y ) → (∨Y ⊗ ∨X)⊗ (X ⊗ Y )(16)

is coalgebra isomorphism and interlaces coactions of these coalgebras on X ⊗ Y .
For objects X, Y, Z with a left dual, the following associativity condition is true:

µX⊗Y,Z ◦ (µX,Y ⊗ Z) = µX,Y⊗Z ◦ (X ⊗ µY,Z). (17)

Propositon 2.4.4 A(X) := {An(X) = ∨X⊗n⊗X⊗n}n∈ZZ≥0
is a graded bialgebra with the

following (co)multiplications:

µm,n := µ∨X⊗m⊗X⊗m,∨X⊗n⊗X⊗n ,

∆n := ∆∨X⊗n⊗X⊗n : ∨X⊗n ⊗X⊗n → (∨X⊗n ⊗X⊗n)⊗ (∨X⊗n ⊗X⊗n) .

Graded tensor algebra T(X) (resp., T(∨X)) is right (resp., left) A(X)-comodule algebra
and coalgebra.

One can carry out the same construction in the category C. The result is a bialgebra
A(X) with the same underlying coalgebra but with new multiplication µ, where Ψ is
replaced by Ψ−1. The corresponding Hopf algebra T(X) (resp., V(X),V•(X)) coincides
with T(X)op (resp., V(X)op,V•(X)op).
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2.5 Let, moreover, duality C of X with itself be given. Then for each n the pairing and
copairing

C = CX⊗n,X⊗n
: X⊗n ⊗X⊗n → 1, C = CX⊗n,X⊗n : 1 → X⊗n ⊗X⊗n , (18)

described by the diagram in Fig.2b and by the input-output reversed diagram, define
duality of X⊗n with itself. Let us define pairing ∨C =: ∨X⊗n ⊗ ∨X⊗n → 1 as morphism
left dual to copairing CX⊗n,X⊗n . We denote by A(X;C) filtered algebra which is a factor-
algebra of A(X) by the ideal ’generated by relations’ in Fig.4 which means that pairings C
and ∨C are invariant with respect to coactions of A(X) on T(X) and T(∨X), respectively.
And let T(X;C) be the factor-algebra of T(X) by relations C

∨X⊗X = 1.

Propositon 2.5.1 A(X;C) is a braided group with antipode and its inverse given by the
diagram in Fig5a. T(X;C) is a right comodule algebra over A(X;C).

Let I = {In ∈ ∨X⊗n⊗X⊗n} be a graded ideal of algebra A(X) generated by relations

∨R⊗ idX⊗2 − id∨X⊗2 ⊗R : ∨X⊗2 ⊗X⊗2 → ∨X⊗2 ⊗X⊗2X⊗2 ⊗X⊗2 (19)

or explicitly

In =
n−1⋃
i=1

(∨X⊗(i−1) ⊗ ∨R⊗ ∨X⊗(n−i−1) ⊗X⊗n → ∨X⊗n ⊗X⊗(n−i−1) ⊗R⊗X⊗(i−1)).(20)

Lemma 2.5.2 Ideal I described above is a biideal of A(X). We denote by A(X, R) a
corresponding factor-bialgebra.

Let, moreover, C be morphism in C(X, ∨X;R), i.e., the pairing C ’flows’ along braids
labeled by R. Then we define a bialgebra A(X, R;C) which is a factor-algebra of A(X) by
an ideal generated by both (19) and the relations given on Fig.4. Similarly, one can define
the factor-algebras A(X, R−1) and A(X, R−1;C) as the bialgebra A(X) in the category C.

Lemma 2.5.3 A family of pairings ρm,n := (∨X⊗m ⊗ X⊗m) ⊗ (∨X⊗m ⊗ X⊗m) → 1
described by the diagram on Fig.5b define bialgebra pairings

ρA(X,R) : A(X, R−1)op ⊗A(X, R) → 1 ,

ρ :A(X,R;C): A(X, R−1;C)op ⊗A(X, R;C) → 1 . (21)
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a) antipode and its inverse for A(X; C) b) Coquasitriangular structure on A(X, R)

Figure 5:

Theorem 2.5.4 (A(X, R), A(X, R−1), ρ) is a coquasitriangular bialgebra and its factor-
algebra (A(X, R;C), A(X, R−1;C), ρ) is a dual quantum braided group in C (or, more
precisely, in a certain category of ’graded spaces’ over C). ’Second inverse’ ρ∼ = {ρ∼m,n}
to quasitriangular structure ρ takes the form:

ρ∼m,n := (∪ ⊗ ∪) ◦ (∨X⊗m ⊗Ψ−1
X⊗m,∨X⊗n ⊗X⊗n).

Lemma 2.5.5 X⊗n equipped with coaction (13) is an object of CO(A(X,R),A(X,R−1)). Braid-
ing ΨX⊗m,X⊗n in this category equals to RX⊗m,X⊗n. Corresponding right action (defined
by the first diagram in Fig.6b)

µX⊗n

r = {µX⊗n

r,m : X⊗n ⊗A(X, R)m → X⊗n}

takes the form

µX⊗n

r,m = (∪∨X⊗m,X⊗m ⊗ idX⊗n) ◦ (id∨X⊗m ⊗RX⊗n,X⊗m) ◦ (ΨX⊗n,∨X⊗m ⊗ idX⊗m) .(22)

One can carry out constructions from 2.2 for X ∈ Obj(CO(A(X,R),A(X,R−1))) to get the
Hopf algebras T(X, R),V(X, R),V•(X, R) in CO(A(X,R),A(X,R−1)), where the letter ’R’ is
added to specify a category. The pair (V(X, R),V(X, R)op) is a quantum braided group in
CO(A(X,R),A(X,R−1)) with the trivial coquasitriangular structure εV(X,R)⊗εV(X,R). The gen-
eralized bosonization theorem [3] allows us to define a quantum braided group (A(X, R) n
V(X, R), A(X, R−1) n V(X, R)op) with the coquasitriangular structure (idA(X,R)⊗εV(X,R)⊗
idA(X,R) ⊗ εV(X,R)) ◦ ρA(X,R) in C which is an analog of the algebra of functions on an in-
homogeneous linear group. The same construction performed for algebras A(X, R−1) and
V(X, R−1) = V(X, R)op produces quantum braided group in C. But in this way we obtain
another corresponding quantum braided group in C.

2.6 Let (A,A, ρ) be a dual quantum braided group in C, (X, ∆X
r ) ∈ Obj(CO(A,A)) , ∨X

left dual to X in C with the left comodule structure ∆
∨X
` defined by the condition in Fig.6a.
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Figure 6:

Then X (resp., ∨X) equipped with the right (resp., left) A-module structure as shown in
Fig.6b becomes a right (resp., left) crossed module over A. According to general theory
[4], the object Γ := ∨X ⊗A⊗X with actions and coactions

µΓ
` := (µ

∨X
` ⊗mA) ◦ (A⊗ΨA,∨X ⊗A) ◦ (∆A ⊗ ∨X ⊗A)⊗X ,

µΓ
r := ∨X ⊗ (mA ⊗ µX

r ) ◦ (A⊗ΨX,A ⊗A) ◦ (A⊗X ⊗∆A) ,

∆Γ
` := (mA ⊗ ∨X ⊗A) ◦ (A⊗Ψ∨X,A ⊗A) ◦ (∆

∨X
` ⊗∆A)⊗X ,

∆Γ
r := ∨X ⊗ (A⊗X ⊗mA) ◦ (A⊗ΨA,X ⊗A) ◦ (∆A ⊗∆X

` )

is a Hopf bimodule over A. Morphism ω defined on Fig.6c is a bicomodule morphism
where 1 is equipped with trivial left and right actions equal to εA. ’Commutant with ω’:

d := µΓ
r ◦ (ω ⊗A)− µΓ

` ◦ (A⊗ ω) : A → Γ (23)

is a first order bicovariant derivative in the sense of Woronowicz [20] (See [5] for a fully
braided context).

In our case A = A(X, R;C) ’biinvariant’ ω equals to Ψ−1
∨X,∨X ◦∨C⊗C : 1 → ∨X⊗2⊗X⊗2.
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