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Abstract—Accompany with the developing of the cloud 

computing, a public-key cryptosystem which is efficiency 

and homomorphic will have a wide application. Through 

analyzing the public-key cryptosystem, which is designed by 

Oded Regev and based on LWE (Learning with errors), in 

details, our main results are optimizing this public-key 

cryptosystem for bits string encryption and designing some 

good idea to make the optimized public-key cryptosystem 

satisfy the additive homomorphism and mixed multiplicative 

homomorphism. And also we give a small example and a 

time simulation about the improved public-key 

cryptosystem. The small example shows the cryptosystem 

can encrypt and decrypt correctly and the time simulation 

tells us the time of the generation of key and the decryption 

is the same with the original cryptosystem, but the 

encryption is more efficiency than the original cryptosystem. 

   

Keywords-LWE; Lattice; Public-key Cryptosystem; 

Homomor 
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I. INTRODUCTION 

Ever since the seminal work of Ajtai
[1]

 connecting the 

average-case complexity of lattice problems to their 

complexity in the worst case, basing cryptography on 

worst-case lattice assumptions has intriguing and fruitful 

achievements
[2-8]

.  

In addition to their unique theory, lattice-based 

schemes enjoy many advantages. The first is their 

asymptotic efficiency and simplicity, which usually 

requires only linear operations on small integers. 

Secondly, they can resist cryptanalysis from quantum 

algorithms. The last is the guarantee that their random 

instances are ―as hard as possible‖. In May 2, 2009, Oded 

Regev presented the LWE (Learning with Errors) and the 

first public Cryptosystem
[2]

 based on LWE. Gentry gave 

an optimized version of the system
[3]

 in which all users 

share a common matrix 
n m

q

A Z chosen uniformly and 

randomly. Assuming the worst-case hardness, which 

approximates the minimum distance in n -dimensional 

lattices within small poly ( )n factors, Peikert also 

constructs a public-key cryptosystem
[4]

 that are secure. 

In this paper, we mainly optimize the public-key 

cryptosystems presented by Oded Regev. In section 2, 

some basic definitions are given. And in section 3 we 

transform the cryptosystem into bits string encryption 

instead of single bit encryption. We would give the 

analysis of homomorphic properties about the public-key 

cryptosystem in section 4. A simple example and an 

efficiency analysis of our improved scheme are given in 

section 5. 

II. PRELIMINARIES 

In this section, we introduce some basic definitions 

and concepts that will be used throughout the paper. 

A. The definitions of homomorphic properties 

At first, the definitions of homomorphic properties are 

explained in the following. 

Definition 1
[9]

  Let R  and S is rings. We call an 

(encryption) function :E R S  

1） additively homomorphic, if there is an efficient 

algorithm PLUS to compute ( )E x y  from ( )E x  

and ( )E y  that does not reveal x  and y . 

2） mixed multiplicatively homomorphic, if there is an 

efficient algorithm MIXED-MULT to compute 

( )E xy  from ( )E x  and y  that does not reveal 

x . 

3） multiplicatively homomorphic, if there is an 

efficient algorithm MULT to compute ( )E xy  from 

( )E x  and ( )E y  that does not reveal x  and y . 

B. The definition of Learning with errors (LWE) 

The public-key cryptosystem, we will talk later, is 

based on the LWE. The definition of LWE is: 

Definition 2
[3]

:For an integer ( )q q n  and a distribution 

  on qZ , the goal of the (average-case) learning with 

error problem ,LWEq   is to distinguish (with 

nonnegligible probability) between the distribution ,s
A  

for some uniform (secret) 
n

qs Z  and the uniform 

distribution on 
n

q qZ Z  (via oracle access to the given 

distribution). In other words, if LWE is hard, the 

collection of distributions ,s
A  is pseudorandom. 
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C. The public-key cryptosystem presented by Oded 

Regev 

Now, we give the construction of the public–key 

cryptosystem presented by Oded Regev. n  is the 

security parameter of the cryptosystem. The cryptosystem 

is parameterized by two integers ,m p  and a probability 

distribution  on
pZ . The setting of these parameters 

guarantees both security and correctness. Choose a 

prime 2p   between 2n  and 22n  and let 

(1 )( 1)logm n p    where  is an arbitrary constant 

and 0  . The probability distribution   is taken to 

be
( )n , where ( ) (1/ ( log ))n o n n  , i.e., ( )n  

satisfies lim ( ) log 0n n n n   . For example, we can 

choose ( ) 1/ ( log )n n n  . In the following description, 

all additions are performed in pZ , i.e., mod p . 

Private Key: Choose n

ps Z  uniformly and 

randomly. The private key is s . 

Public Key: For 1,...,i m , choose m  vectors 

1,...,
n

m pZa a  independently from the uniform 

distribution. Also choose elements 
1,..., m pe e Z  

independently according to  . The public key is given by 

1( , )m

i i ib a  where ,i i ib e  a s . 

Encryption: In order to encrypt a bit, we choose a 

random set S  uniformly among all 2m  subsets of  m . 

The encryption is ( , )i ii S i S
b

  a  if the bit is 0 or 

( , )
2

i ii S i S

p
b

 

 
 
 

 a  if the bit is 1. 

Decryption: The decryption of a pair ( , )ba  is 0 if 

,b  sa  is closer to 0 than to mod
2

p
p

 
 
 

. Otherwise, 

the decryption is 1. 

III. OPTIMIZE THE PUBLIC-KEY CRYPTOSYSTEM 

PRESENTED BY ODED REGEV TO BITS STRING 

ENCRYPTION 

In this section we will adapt the cryptosystem to bits 

string encryption, and also the proof of the correctness 

and security are presented. 

A. The improvement of the cryptosystem presented by 

Oded Regev 

The original cryptosystem is bit encryption. We now 

want to change it into bits encryption. The way how to 

optimize is inspired by Public-Key Cryptosystems from 

the Worst-Case Shortest Vector Problem
[4]

. 

In our scheme, the part to generate key is same with 

the Cryptosystem above. We make change in the parts of 

encryption and decryption.  

There is a bits string 1 2{ , ,..., } {0,1}T n

nm m m m . 

The progresses of encryption and decryption are designed 

as follows:  

Encryption: In order to encrypt a bits string we 

choose a random set S  uniformly among all 2m  

subsets of  m . We let the
2

p 
  

 
k m b , and 

the { , ,..., }T

i i ii S i S i S
b b b

  
    b . The m is 

encrypted to ( , )ii S ka . 

Decryption: The decryption of a pair ( , )ka  is 0 

if ,ik   sa  is closer to 0 than to mod
2

p
p

 
 
 

. 

Otherwise, the decryption is 1. So we can get
im . The 

m is recovered.  

B. Correctness 

According to our improvement, ,ik   sa is been 

computed one by one, the correctness is approximately 

same to the cryptosystem presented by Oded Regev. So 

the correctness of single bit encryption is given firstly. 

Correctness
[2]

: Let 0  . Assume  

Pr | | / 2 1
2ke

p
e






  
    
  

, for any {0,1,..., }k m and k  . 

Then, the probability of decryption error is at most . 

That is, for any bit {0,1}c , if we use the protocol above 

to choose private and public keys, encrypt c and decrypt 

the result, the probability of decrypting correctly is at 

least1  . 

The proof to the correctness above in details can be 

gotten in paper [2]. In decrypting we 

compute ,
2

i i i

i S

p
k m e



 
     

 
sa , so we can decrypt 

ik  to 
im . Finally, m is decrypted successfully. 

C. Security 

Our improvements are based on the public-key 

cryptosystem presented by Oded Regev. The 

improvements only change the steps of the original 

cryptosystem. The improved scheme is also based on 

LWE. The proof of security is the same to the public-key 

cryptosystem presented by Oded Regev. 

Security
[2]

: For any 0   and 

(1 )( 1)logm n p   , if there is a polynomial time 

algorithm W which can distinguish between encryption of 

0 and encryption of 1, then there will be a distinguisher 

Z  which distinguishes between ,A s  and U  for a 

non-negligible fraction of all possible s . 

The detailed proof to the security above can be seeing 

in the paper [2]. 

IV. HOMOMORPHIC ANALYSIS OF THE PUBLIC-KEY 

CRYPTOSYSTEM PRESENTED BY ODED REGEV 

The homomorphism has three parts, which are 

additive homomorphism, mixed multiplicative 

homomorphism and multiplicative homomorphism. The 

public-key cryptosystem satisfies the additive 

homomorphism and mixed multiplicative homomorphism, 

but it isn’t suit for the multiplicative homomorphism. The 
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three parts would be discussed one by one. 

A. Additive homomorphism 

Firstly, we discuss the additive homomorphism of this 

cryptosystem. If 
1c  and 

2c  is the encryption of 1m  

and
2m , We have 

1 1( , )c b a  and 
2 2( , )c b a . The sum 

of 
1c  and 

2c  is
1 2( , )c b b a . We can 

get
1 22 , 2

2 2
ii S

p p
c m m e



   
           

   
sa . We are 

not sure that
~
Pr 2 | | / 2 1

2ke

p
e






  
     

  
. In order to 

satisfy the additive homomorphism, we let 

( , ) / 2i i ib e   sa in the public key generation. Then, 

1,
2

p
c m

 
     

 
sa 2

2
ii S

p
m e



 
   

 
 .If 

1 0m   

and
2 0m  , 

1 2 0m m m   ,  we can achieve that 

Encrypt[ m ]=Encrypt[
1m ]+Encrypt[

2m ]. This scene is 

suit for
1 0m  ,

2 1m   and
1 1m  ,

2 0m  . When 
1 1m   

and
2 1m  , , 2

2
ii S

p
c e



 
     

 
sa  which will be 

decrypted for 1. This will be satisfy the additive 

homomorphism in the or additive, but it doesn’t accord 

with additive homomorphism in addition modulo 2.  

However, if , 2
2

p
c

 
     

 
sa , c is decrypted to 0. 

It will satisfy the addition modulo2. 

B. Mixed multiplicative homomorphism 

The public-key cryptosystem can also satisfy mixed 

multiplicative homomorphism. The decryption progress 

of this cryptosystem must add a small judge to satisfy the 

mixed multiplicative homomorphism. The judge is that 

whether 0b   must be decided. If 0b  ,c would be 

decrypted to 0. 

If 1m  is 0 or 1 and 2 2( , )c b a  is achieved by 

encrypting 2m , which is also 0 or 1, the result is 0 or 2b  

when 1 2( , )c m b a . Then we decrypt c  as the 

decrypting system presented above, we can achieve 

1 2 1 2( ( )) ( ( ))D m E m D E m m    whether 
1m  and 

2m  is 

0 or 1. So the public-key-cryptosystem satisfies mixed 

multiplicative homomorphism. 

C. Multiplicative homomorphism 

The public-key cryptosystem can not fulfill 

multiplicative homomorphism. The second part 

of ( , )c b a , which is ciphertext of m , is  

( , )
2 2

i i i

i S i S

p p
b m b m e

 

   
          
   

  sa . 

Assuming we have 1 1 ,
2

i

i S

p
b m e



 
      
 

sa  

and 2 2 ,
2

i

i S

p
b m e



 
      
 

sa 1 2 1
2 2

p p
b b m

   
      

   

2

2 1 1 2, , ,
2 2 2

i

i S

p p p
m m m e m



     
                     

     
s s sa a a

2

2, , ( )
2

i i i i

i S i S i S i S

p
e e m e e

   

 
            

 
   s sa a , 

in which 2, sa , ,i

i S

e


   sa  and 2( )i

i S

e


  can not 

be committed size. So we can not decrypt when we 

compute 1 2b b . Maybe it can satisfy multiplicative 

homomorphism when make some bigger improvements. 

V. SIMPLE EXAMPLE AND SIMULATION 

A. A simple example of the system optimized 

A simple example of this public-key system is given 

below. We define 10, 5, 991n m p   . The private key 

is {487,204,195,460,872,975,613,57,154,743}s  and 

the public key is  

1

2

3

4

5

{284,904,76,469,696,297,637,747,924,276};

{692,285,287,261,796,102,327,891,810,825};

{137,69,413,277,404,389,848,734,662,128};

{921,313,244,768,308,479,443,257,897,270};

{840,763,681,638,69











a

a

a

a

a 1,186,167,905,952,920};

{2230811,2354217,1779544,2273804,2759153}.b

 

{0,1,1,0,0}m will be encrypted. The second part of the 

ciphertext is  

{6838691,4282364,4919905,294630,8514513} b . 

Then we decrypt the ciphertext and 

get {5,542,491,47,147}=k . At the end, we can achieve 

the {0,1,1,0,0}m   after the decryption of the 

ciphertext.     

B. Time Efficiency of the system optimized 

An efficiency simulation is configured with an Intel(R) 

Core(TM)2 CPU(E8400 at 3.00GHz) and 1.96GB RAM. 

It is designed for 197, 60, 100p n m   . The size of 

information is 8bits. We measure the time-consuming of 

key generating, encryption and decryption for 10times 

and give the means in table 1. 

TABLE I.  THE COMPARISON OF TIME EFFICIENCY BETWEEN 

REGEV’S SCHEME AND OUR OPTIMIZED SCHEME 

  
Key generating 

 
Encryption 

 
Decryption 

Regev’s scheme 4.218×10-4 1.200×10-5 3.856×10-5 
Optimized 

scheme 
4.356×10-4 4.047×10-5 3.913×10-5 

The figure one shows the time of Key generating and 

Decryption is roughly equal. But the time of Encryption 

in our scheme is less than the Regev’s scheme. 

And also we simulate the RSA in the same 

environment. The comparison between RSA and our 

scheme is showed table 2.   

Item 
Time(s) 

Sch

eme 
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TABLE II.  THE COMPARISON OF TIME EFFICIENCY BETWEEN 

RSA(1024) AND OUR OPTIMIZED SCHEME 

  
Key generating 

 
Encryption 

 
Decryption 

RSA 

(1024) 
6.786 0.176 0.139 

Optimized 

scheme 
4.356×10-4 4.047×10-5 3.913×10-5 

  From table 2, we can see the scheme based on lattice is 

much faster than the RSA for its linear operation

VI. CONCLUSION 

The public-key cryptosystem based on lattice is so 

attractive because of its good properties. And also the 

homomorphism becomes hotspot for its advantages. The 

public-key homomorphism cryptosystem based on lattice 

will have a foreground in the future. Upon our changes, 

the public-key cryptosystem can be suit for the additive 

homomorphism, mixed multiplicative homomorphism. 

And also we change it into bits string encryption. But it 

can not satisfy the multiplicative homomorphism. So we 

have a large work to do on the homomorphic public-key 

cryptosystem based on lattice. 
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