Symmetry Properties of Generalized Gas Dynamics Equations

Maria SEROVA

Technical University, Poltava, Ukraïna

Abstract

We describe a class of generalized gas dynamics equations invariant under the extended Galilei algebra $A \tilde{G}(1, n)$.

Symmetry properties of the gas dynamics equations

$$
\left\{\begin{array}{l}
\vec{u}_{0}+(\vec{u} \cdot \vec{\nabla}) \vec{u}+\frac{1}{\rho} \vec{\nabla} p=0 \tag{1}\\
\rho_{0}+\operatorname{div}(\rho \vec{u})=0 \\
p=f(\rho)
\end{array}\right.
$$

where \vec{u} is the velocity, ρ is the density, p is the pressure of gas, were investigated in [1]. As has been shown in [1], the system (1) has the widest symmetry when $f(\rho)=\lambda \rho^{\frac{n+2}{n}}$ ($\lambda=$ const, n is the quantity of space variables $\vec{x} \in R_{n}$). In this case a basis of the maximum invariant algebra of the equation (1) is represented by the operators

$$
\begin{align*}
& \partial_{0}, \quad \partial_{a}, \quad J_{a b}=x_{a} \partial_{b}-x_{b} \partial_{a}+u^{a} \partial_{u^{b}}-u^{b} \partial_{u^{a}} \\
& D_{1}=x_{0} \partial_{0}+x_{a} \partial_{a}, \quad D_{2}=x_{0} \partial_{0}-n \rho \partial_{\rho}-u^{a} \partial_{u^{a}}, \tag{2}\\
& G_{a}=x_{0} \partial_{a}+\partial_{u^{a}}, \quad \Pi=x_{0}\left(x_{0} \partial_{0}+x_{a} \partial_{a}-n \rho \partial_{p}-u^{a} \partial_{u^{a}}\right),
\end{align*}
$$

where $a, b=\overline{1, n}$.
We shall call the algebra (2) the extended Galilean algebra and designate it by $A \tilde{G}(1, n)$. Other models of gas conduct are well-known except the system (1) (see, for example, [2]). Usually the first and second equations of the system (1) are invariables and the third equation has any form. For this reason we have the problem of finding the function

$$
\begin{equation*}
S=S\left(x_{0}, \vec{x}, \vec{u}, \rho, p, \vec{u}_{0}, \vec{u}_{a}, \rho_{0}, \rho_{a}, p_{0}, p_{a}\right) \tag{3}
\end{equation*}
$$

where $a=\overline{1, n}, \vec{u}_{a}=\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}\right\}, \rho_{a}=\vec{\nabla} \rho, p_{a}=\vec{\nabla} p, \vec{u}_{a}=\frac{\partial \vec{u}}{\partial x_{a}}$, with which the system

$$
\left\{\begin{array}{l}
\vec{u}_{0}+(\vec{u} \cdot \vec{\nabla}) \vec{u}+\frac{1}{\rho} \vec{\nabla} p=0 \tag{4}\\
\rho_{0}+\operatorname{div}(\rho \vec{u})=0 \\
S=0
\end{array}\right.
$$

is invariant with respect to the algebra $A \tilde{G}(1, n)$. It follows from the invariance with respect to the operators $\partial_{0}, \partial_{a}$ that this system has the form

$$
\left\{\begin{array}{l}
\vec{u}_{0}+(\vec{u} \cdot \vec{\nabla}) \vec{u}+\frac{1}{\rho} \vec{\nabla} p=0, \tag{5}\\
\rho_{0}+\operatorname{div}(\rho \vec{u})=0 \\
\rho_{0}+F\left(\vec{u}, \rho, p, \vec{u}_{a}, \rho_{a}, p_{a}\right)=0 .
\end{array}\right.
$$

The infinitesimal operator of the algebra $A \tilde{G}(1, n)$ has the following form

$$
\begin{equation*}
X=d_{\mu} \partial_{\mu}+c_{a b} J_{a b}+g_{a} G_{a}+\kappa_{1} D_{1}+\kappa_{2} D_{2}+a \Pi+\eta\left(x_{0}, \vec{x}, \vec{u}, \rho, p\right) \partial_{\rho} \tag{6}
\end{equation*}
$$

Using invariance of the first equation of the system (5) with respect to the operator (6), we obtain

$$
\begin{equation*}
\eta=-(n+2)\left(a x_{0}+\kappa_{2}\right) p . \tag{7}
\end{equation*}
$$

This means that all operators of the algebra (2) must have such a form except

$$
\begin{equation*}
D_{2}^{\prime}=D_{2}-(n+2) p \partial_{p}, \quad \Pi^{\prime}=\Pi-(n+2) x_{0} p \partial_{p} . \tag{8}
\end{equation*}
$$

Demanding that the third equation of the system (5) be invariant with respect to the Galilean operators, we obtain

$$
\begin{equation*}
\frac{\partial F}{\partial u^{a}}=p_{a} . \tag{9}
\end{equation*}
$$

Hence

$$
\begin{equation*}
F=(\vec{u} \vec{\nabla}) p+\Phi\left(\rho, p, \vec{u}_{a}, \rho_{a}, p_{a}\right) . \tag{10}
\end{equation*}
$$

We assume that

$$
\begin{equation*}
\Phi=\Phi(\rho, p, \vec{\nabla} \vec{u}, \vec{\nabla} \rho, \vec{\nabla} p) . \tag{11}
\end{equation*}
$$

It follows from invariance with respect to the rotations $J_{a b}$ that

$$
\begin{equation*}
\Phi=\Phi\left(\rho, p, w_{1}, w_{2}, w_{3}, w_{4}\right), \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{1}=\vec{\nabla} \vec{u}, w_{2}=(\vec{\nabla} \rho)^{2}, w_{3}=(\vec{\nabla} \rho)(\vec{\nabla} p), w_{4}=(\vec{\nabla} p)^{2} . \tag{13}
\end{equation*}
$$

Substituting (10)-(13) in the third equation of the system (5), we have

$$
\begin{equation*}
p_{0}+(\vec{u} \cdot \vec{\nabla}) p+\Phi\left(\rho, p, w_{1}, w_{2}, w_{3}, w_{4}\right)=0 . \tag{14}
\end{equation*}
$$

Now let us consider the invariance of the equation (14) with respect to the operators $D_{1}, D_{2}^{\prime}, \Pi^{\prime}$. For each of them we obtain the equation for the function Φ

$$
\begin{align*}
D_{1}: & w_{1} \Phi_{1}+2 w_{2} \Phi_{2}+2 w_{3} \Phi_{3}+2 w_{4} \Phi_{4}-\Phi=0, \\
D_{2}^{\prime}: & n \rho \Phi_{\rho}+(n+2) p \Phi_{p}+w_{1} \Phi_{1}+2 n w_{2} \Phi_{2}+2(n+1) w_{3} \Phi_{3}+ \\
& 2(n+2) w_{4} \Phi_{4}-(n+3) \Phi=0 ; \tag{15}\\
\Pi^{\prime}: & n \rho \Phi_{\rho}+(n+2) p \Phi_{p}+2 w_{1} \Phi_{1}+2(n+1) w_{2} \Phi_{2}+2(n+2) w_{3} \Phi_{3}+ \\
& 2(n+3) w_{4} \Phi_{4}-(n+4) \Phi+n \Phi_{1}-(n+2) p=0 .
\end{align*}
$$

The function

$$
\begin{equation*}
\Phi=\frac{n+2}{n} p \operatorname{div} \vec{u}-|\vec{\nabla} p| p^{\frac{1}{n+2}} H\left(\rho p^{-\frac{n}{n+2}}, \frac{\vec{\nabla} \rho \vec{\nabla} p}{(\vec{\nabla} \rho)^{2}} p^{-\frac{2}{n+2}}, \frac{|\vec{\nabla} p|}{|\vec{\nabla} \rho|} p^{-\frac{2}{n+2}}\right) \tag{16}
\end{equation*}
$$

is a general solution of the system (15).
Thus we have proved the following
Theorem. The system (5) is invariant with respect to the extended Galilean algebra $A \tilde{G}(1, n)$ (2), (8) when it has the form

$$
\left\{\begin{array}{l}
\vec{u}_{0}+(\vec{u} \cdot \vec{\nabla}) \vec{u}+\frac{1}{\rho} \vec{\nabla} p=0 \tag{17}\\
\rho_{0}+\operatorname{div}(\rho \vec{u})=0, \\
p_{0}+(\vec{u} \cdot \vec{\nabla}) p+\frac{n+2}{n} p \operatorname{div} \vec{u}= \\
\quad|\vec{\nabla} p| p^{\frac{1}{n+2}} H\left(\rho p^{-\frac{n}{n+2}}, \frac{\vec{\nabla} \rho \vec{\nabla} p}{(\vec{\nabla} \rho)^{2}} p^{-\frac{2}{n+2}}, \frac{|\vec{\nabla} p|}{|\vec{\nabla} \rho|} p^{-\frac{2}{n+2}}\right)
\end{array}\right.
$$

where H is an arbitrary smooth function.
Notation 1. At $H=0$ the result of the theorem is the same as one obtained by Ovsyannikov in [2].
Notation 2. By substitution

$$
\begin{equation*}
p=\lambda \frac{n}{n+2} P^{\frac{n+2}{n}}, \quad \lambda=\text { const } \tag{18}
\end{equation*}
$$

the system (17) reduces to

$$
\left\{\begin{array}{l}
\vec{u}_{0}+(\vec{u} \cdot \vec{\nabla}) \vec{u}+\frac{\lambda}{\rho} P^{\frac{2}{n}} \vec{\nabla} P=0, \tag{19}\\
\rho_{0}+\operatorname{div}(\rho \vec{u})=0, \\
P_{0}+\operatorname{div}(P \vec{u})=P^{\frac{1}{n}}|\vec{\nabla} P| f\left(\frac{P}{\rho}, \frac{\vec{\nabla} \rho \vec{\nabla} P}{(\vec{\nabla} \rho)^{2}}, \frac{|\vec{\nabla} P|}{|\vec{\nabla} \rho|}\right) .
\end{array}\right.
$$

References

[1] Fushchych W., Shtelen W. and Serov N., Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics, Dordrecht, Kluwer Academic Publishers, 1993, 436p.
[2] Ovsyannikov L.W., Lectures on the Basis of Gas Dynamics, Moscow, Nauka, 1981, 368p.

