

Optimizing Live Migration of Virtual Machines with

Context Based Prediction Algorithm

Yong Cui
1,2

, Yusong Lin
1
, Yi Guo

1,2
, Runzhi Li

1
, Zongmin Wang

1

1
Henan Provincial Key Lab on Information Networking, Zhengzhou University, Zhengzhou, China

2
Institute of Information Engineering, Zhengzhou University, Zhengzhou, China

e-mail: {cuiyong, lys, guoyi, lrz, zmwang}@zzu.edu.cn

Abstract—With the increasing use of Virtual Machine (VM) in

data center, live migration of virtual machine has become a

powerful and essential instrument for resource management.

Although the prevailing Pre-copy algorithm might perform

well on the stage of lightweight, it cannot guarantee a desirable

performance in the case of high dirty page rate or low network

bandwidth. The resending problem results in striking

performance degradation and waste of resource. Toward this

issue, this paper presents a novel Context Based Prediction

algorithm (CBP), which exploits PPM (Prediction by Partial

Match) model to predict the dirty pages in the future iteration

based on the historical statistics of dirty page bitmap. The

transmissions of those frequently updated pages identified are

postponed. Experiments demonstrate that CBP can achieve a

satisfying balance between accuracy and overload, and shorten

total migration time, downtime and total pages transferred

significantly, comparing with KVM’s default algorithm.

Keywords-Virtual Machine; Live Migration; Context Based

Prediction; Performance Evaluation

I. INTRODUCTION

Live migration is one of the key features of Virtual
Machine technology, which provides the server administrator
with a mechanism that moves a virtual machine from one
physical server to another while the tasks inside the VM are
continuously running[1]. It can facilitate hardware online
maintenance, real-time load balancing, fault tolerance and
power saving in data center.

As share storage (such as SAN or NAS) is commonly
adopted in data center, among the live migration process,
memory migration takes the primary part. Prevailing Virtual
Machine Monitor (VMM) or Hypervisor, e.g. KVM [2],
mainly leverage the state of the art Pre-copy algorithm [3] to
carry out live memory-to-memory migration. The goal of
Pre-copy is to migrate the VM in a short total migration time
and downtime, and occupy less network bandwidth.
Although Pre-copy could obtain a relatively remarkable
downtime reduction by leveraging iterative memory pre-
copy, its performance heavily depends on page dirty rate and
network bandwidth [1]. Thus, in the case of write-intensive
workload or low bandwidth (e.g. WAN), Pre-copy
retransmits the same dirty pages many times during
migration, which can lead to an extended total migration
time and downtime, also waste of network bandwidth.

In this paper, we present a novel approach CBP to
optimize Pre-copy. By exploiting PPM prediction model, we
employ the up-to-date statistics of dirty page bitmap as the
prediction context to identify the dirty pages in the following
iterative rounds. The transmission of those pages with high
dirty rate are delayed, which can avoid resending those pages
repeatedly during migration, furthermore decrease the
redundant transmission overhead and the extended total
migration time and downtime.

The rest of this paper is organized as follows. The related
work and problem statement is introduced in Section 2 and
Section 3. Section 4 describes the design and implementation
of the CBP algorithm. The performance results and analysis
are present in Section 5, followed by the conclusion and
future work in Section 6.

II. RELATED WORK

To address the resending problem in Pre-copy, many
approaches have been proposed. Some aim at compressing
the transferred page data. Jin et al. [4] propose an adaptive
compression based scheme MECOM, which compresses
memory page according to its characteristics. Different
compression algorithm is applied to pages of different type.
Paper [5] utilizes Delta Compression technique to calculate
the delta page from current and previous version of a page by
XOR, and then compresses the delta page with the help of
RLE (Run Length Encoding compression). Zhang et al. [6]
use hash based fingerprints to find identical and similar
memory pages, and then also employ RLE to eliminate
redundant data during transmission. These approaches do
increase the throughput and accelerate page sending, but they
neglect the retransmission of the same pages updated many
times.

Some methods focus on identifying the pages with high
dirty rate and postponing their transmissions. Clark et al. [3]
introduce an optimization method called "Stunning Rogue
Processes" to limit dirty pages transmission, which skips
pages that have been dirtied in the previous iteration. Ma et
al. [7] propose an improved pre-copy approach. They add a
bitmap to mark those frequently update pages and send these
pages at the last round. Liu et al.[8] propose a Hierarchical
Copy Algorithm to improve Pre-copy, which records the
dirty times of pages, and identifies high dirty pages with a
preset threshold for the dirty times, then delays the sending
of these pages to the last iterative round. Similarly, a times-

International Workshop on Cloud Computing and Information Security (CCIS 2013)

© 2013. The authors - Published by Atlantis Press 441

series based pre-copy approach [9] introduces a historical
dirty pages set. If the count of a page that appears in the set
exceeds a preset threshold, this page is not sent until the last
round. These methods make decision for sending dirty pages
simply based upon limit historical dirty times and ignore the
page access pattern. Unlike these approaches, our scheme
identifies dirty pages according to the page access context.

Regarding other schemes, Hines et al. [10] propose a
novel post-copy strategy to carry out live migration instead
of Pre-copy, which defers the memory page sending until
after the VM has been resumed in the destination. The
memory pages are transferred on demand to avoid the
resending problem. Differing from them, our work mainly
focuses on Pre-copy.

For predicting by context models, PPM (Prediction by
Partial Match) is a widely used model. [11] uses PPM to
facilitate the arithmetic coding and then performs data
compression. In paper [12], a prediction tree based on PPM
is constructed to do web prefetching. Compared to these
work, we work in a specialized domain with a different
context.

III. PROBLEM STATEMENT

The main procedure of Pre-copy is iteratively transferring
memory pages from the source host to the target host. During
the first iterative round, all pages are marked as dirty pages,
and transferred to destination. Subsequent iterations transfer
only those pages modified during the previous transfer round.
This iteration would not terminate until the amount of
remaining dirty pages becomes enough small to achieve a
short stop time, namely downtime. Afterwards, the VM is
suspended and the remaining dirty pages, as well as CPU
registers and I/O device statuses, are send out to the
destination. Then the VM is resumed at the destination. The
duration of the whole process is the total migration time.

For iterative page copy, Pre-copy maintains a dirty page
bitmap to mark which pages should be sent in each iteration.
Given a memory page p, if p is dirty during the previous
round, the bit of p in bitmap is set to „1‟, otherwise is „0‟. At
each iterative round, Pre-copy first updates the bitmap with
the dirty page trace logging, then sends the pages of which
the bit in bitmap is „1‟. In the case of high dirty page rate,
page p is written many times, e.g. the historical statistics of
the bit of p is „0110110101101‟, which means among the
previous 13 iterations, 8 replicates of p is copied to
destination, but in fact it has the same effect as only
transferring the last replica. When there are lots of pages like
p in this case, this drawback can cause transferring a large
number of unnecessary data and lead to a extended total
migration time. Meanwhile, if the dirty rate exceeds the
network bandwidth, the remaining dirty pages in the stop
phase cannot converge to a small size. This will result in an
enlarged downtime.

The reason of this drawback is that the default Pre-copy
algorithm is unaware of the page access pattern, in which
many appliances work commonly, according to the
“Principle of Locality”. If the pattern is known, we can
predict whether a page will be dirty or not in the future. So, it
is rational to exploit the historical statistics of dirty page

bitmap reflecting the pattern to make a proper transferring
decision for dirty pages.

IV. CONTEXT BASED PREDICTION ALGORITHM

In this section, we describe our context based prediction
algorithm optimized for Pre-copy in detail. We first
demonstrate how to predict dirty page by PPM, and then
introduce the implementation of CBP.

A. Predicting Dirty Page by PPM

In general, PPM uses n-order Markov model to describe
the dataset, and keeps track of the probability of a symbol
occurring under the condition of a specific sequence of
symbols has already been seen, i.e. a context, where n is the
length of a context. Prediction is made by the probability of
the symbol. In the domain of predicting dirty page, the
historical statistics of dirty page bitmap is the dataset, and
the symbol set is {0, 1}, and the context is the bit sequence
of a page. We introduce a two dimensional array
Bitmap_record to present the above dataset. Given a page p,
Bitmap_record [p][] indicates the historical statistics of the
bit of p. We define the size of Bitmap_record[p][] as m. For
a context C with the length of n (n ∈ [0, m]), Let C0 =
occurring times of C followed by „0‟ in Bitmap_record[p][],
C1 = occurring times of C followed by „1‟ in
Bitmap_record[p][] and P is the probability of being dirty
page, then we predict p is a dirty page in context C as:

 𝑃 =
𝐶1

𝐶0+𝐶1
× 100% > 50% (1)

Formula (1) means if the occurring probability of „1‟
following context C is greater than that of „0‟ in the occurred
bit sequence, we identify page p as dirty in the future.

Also taking the page p illustrated in Section 3 as an
example, Bitmap_record [p][] is {0110110101101}, and
order n ranges from 0 to 13, e.g. order-2 context is {01},
order-3 is {101}. The prediction of p with order-2~7 is
shown in Table 1.

As can be analyzed from the example, the combination of
m and n has a strong impact on the accuracy and
performance. Clearly we can get a more exact result with a
larger n, but if m is not large enough, the n-order context
would easily lead to obscure results (e.g. order 4~6 in Table I)
or mismatch (e.g. order 7) due to lacking of sufficient
occurrence. However, a lager m requires more resources
utilization. Therefore, it is rational to confirm a effective n
with the given m, in the purpose of achieving a trade-off
between accuracy and performance. To address this issue,
we propose a formula to determine the proper n as following:

For predicting a page p, Let Ci is the occurring times of
the i-order context (i ∈ [0, m]) among Bitmap_record [p][],
the desired order n is figured out as:

n = max { i | Ci ≥ 3 ∩ i ∈ [0, m] } (2)

Formula (2) indicates we choose the context with enough
frequency and length. Therefore, order-3 is the right choice
to do prediction in above example. In regard of the variable
m, we will give an evaluation later in Section 4.

442

TABLE I. EXAMPLE OF PREDICTING DIRTY PAGE BY PPM

Order Context
Probability

of being dirty

Prediction

result

2 01 75% (3/4) Dirty

3 101 67% (2/3) Dirty

4 1101 50% (1/2) NOT Dirty

5 01101 50% (1/2) NOT Dirty

6 101101 0 (0/1) NOT Dirty

7 0101101 mismatch mismatch

B. Algorithm Implementation

The proposed CBP algorithm utilizes the context based

prediction model mentioned above to optimize the pre-copy

based live migration. Based on the historical statistics of

dirty page bitmap, we exploit PPM to identify the modified

frequently pages in the following round and delay the

transmission of these dirty pages to avoid the resending

problem. With this solution, the total migration time,

downtime and total pages transferred can be evidently

decreased. We added the codes of CBP in KVM 0.14.0. As

shown in Table II, CBP mainly comprises of two phases:

TABLE II. PSEUDO CODE OF CBP

Input:

Bitmap_record: the historical statistics of dirty page

bitmap

m: the record size for each page

 open dirty page logging;

 for 1 to m {

 bitmap = get dirty page bitmap;

update Bitmap_record with bitmap;

 }

for each iteration {

 bitmap = get dirty page bitmap;

update Bitmap_record with bitmap;

for each page{

 if (bitmap[page] = 1) {

is_dirty_next_round=

do_PPM(Bitmap_record[page][]);

if(! is_dirty_next_round){

 send page;

}

}

}

a) Trace and Record. When the migration is launched,

we open the dirty page logging mechanism at the same time

to trace the write-operations for each memory page.

According to the record size for each page, i.e. argument m,

we record the dirty page bitmap into Bitmap_record at a

regular interval which forms the historical statistics for

prediction. This process finishes in a short period of time so

as not to put off the total time. Not confined to this, in order

to keep the statistics data available and up to date, we also

update Bitmap_record at the beginning of each iteration

with the dirty page bitmap mapped for page sending in a

FIFO pattern.

b) Predict and Judge. For each iteration, when a page

of which the mapping bit is „1‟ in the bitmap of this round is

ready for transmitting to the destination, we intervene and

predict whether the page will be dirty in the following round

according to its access context, as stated in the previous

section. If the probability of being dirty is larger than that of

not, the page is delayed to send, otherwise, we transfer it as

normal.

V. PERFORMANCE EVALUATION

To evaluate the performance of CBP, we first estimate its
accuracy and overload, and assess the parameter m. Then we
carry out a series of live migration experiments with
differently configured VMs to compare our CBP with
standard KVM algorithm, in terms of total migration time,
downtime and total pages transferred.

A. Experimental Setup

Tests are conducted in three physical machines with the
same hardware configuration. Each host has an Intel Core
2.93GHz dual processor and 4G RAM. The three computers
are connected through a Gigabit Ethernet. NFS (Network
File System) is installed in one of them as the share storage.
Both of host OS and guest OS are Ubuntu Server 11.10, and
the virtualization modules in the contrast experiments are
standard KVM 0.14.0 and the modified KVM 0.14.0 with
our adding CBP codes. Of particular note is that we keep the
de-duplication mechanism available both, which only sends
one byte instead of the whole page in case of bytes
duplication. We run and move only one VM in the hosts.

The different workloads running in the migrated VM are
listed as following:

a) Idle: The low dirty-page rate scenario that we

migrate a VM without running any workload.

b) Kernel Compiling: We migrate a VM while it is

executing kernel compiling, which stands for the high dirty-

page rate scenario with a regular page access pattern.

c) Web Server: In this scenario, we migrate a VM

providing dynamic web serving. We deploy an open-source

web application WordPress in the migrated VM. With 10

concurrent connections from the clients, this represents the

high dirty rate scenario with the sweeping write operations.

B. Experimental Results

1) Prediction Accuracy and Overload: Figure 1 shows
the accuracy and CPU usage of CBP according to various
values of m, when migrating a VM with 1G RAM running
kernel compiling and web server separately. As shown, both
of the accuracy and CPU usage are increased as the
increasing of m, but when m exceeds about 35, the accuracy
drops, which is probable due to the more outdated contexts
with a larger m. Moreover, the operation on kernel
compiling is more accurate due to its more regular page
access pattern. For the trade-off between accuracy and
overload, we set m 30 in the following tests.

443

2) Total Migration Time and Downtime: From figure 2

and figure 3 we can see the comparisons between traditional

Pre-copy and CBP on migrating a VM with 1GB RAM.

They show our scheme can shorten the total migration time

and downtime at best by 35% and 22% respectively, which

in the case of kernel compiling.

3) Total Pages Transferred: In this test, we migrate a

VM configured differently with RAM of 512M, 1024M,

1536M and 2048M, when each of the three workloads is

running in turn. Figure 4 depicts the total pages transferred

in these scenarios, in which CBP reduces the memory pages

we need to send significantly in case of high dirty page rate.

Figure 1. Accuracy and overload of CBP

Figure 2. Downtime comparison

Figure 3. Total migration time comparison

Figure 4. Total pages transferred comparision

VI. CONCLUSION

In this paper we introduce a novel Context Based
Prediction algorithm optimized for the pre-copy based live
migration, which exploits PPM model to predict the dirty
pages and delays their transferring, avoiding the resending
problem of Pre-copy. The experiments demonstrate the
effectiveness of our approach. In the future, we will study
predicting dirty pages with the contexts of unfixed sizes.

REFERENCES

[1] M. Nelson, B. Lim, and G. Hutchines, “Fast transparent migration for
virtual machines,” Proc. The USENIX Annual Technical Conference
(USENIX‟05), 2005, pp.391–394.

[2] http://www.linux-kvm.org/.

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I.
Pratt, and A. Warfield, “Live Migration of Virtual Machines,” Proc.
The 2nd Symposium on Networked Systems Design and
Implementation(NSDI‟05), 2005, pp.273–286.

[4] H. Jin, L. Deng, S. Wu, X. H. Shi, and X. D. Pan, “Live Virtual
Machine Migration with Adaptive Memory Compression,” Proc. The
2009 IEEE International Conference on Cluster Computing, 2009,
pp.1-10.

[5] P. Svärd, B. Hudzia, J. Tordsson, “Evaluation of Delta Compression
Techniques for Efficient LiveMigration of Large Virtual Machine,”
Proc. The 2011 ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, 2011, pp. 111-120.

[6] Xiang Zhang, Zhigang Huo, Jie Ma, Dan Meng, “Exploiting Data
Deduplication to Accelerate Live Virtual Machine Migration, ” Proc.
The 2010 IEEE International Conference on Cluster Computing. 2010,
pp. 88-96.

[7] F. Ma, F. Liu, and Z. Liu, “Live Virtual Machine Migration Based on
Improved Pre-copy Approach,” Proc. Software Engineering and
Service Sciences, 2010, pp. 230-233.

[8] Z. B. Liu, W. Y. Qu, T. Yan, and H. T. Li, “Hierarchical Copy
Algorithm for Xen Live Migration, ” Proc. The 2010 International
Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery, 2010, pp. 361-364.

[9] Bolin Hu, Zhou Lei, Yu Lei, Dong Xu, Jiandun Li, “A Time-Series
Based Precopy Approach for Live Migration of Virtual Machines,”
Proc. ICBPDS 2011, 2011, pp.947-952.

[10] M. R. Hines, U. Deshpande, and K. Gopalan, “Post-Copy Live
Migration of Virtual Machines,” ACM SIGOPS Operating Systems
Review, Volume 43 Issue 3, July 2009.

[11] J. G. Cleary and I. H.Witten, “Data compression using adaptive
coding and partial string matching”, IEEE Transactions on
Communications, Vol. 32, No. 4, 1984, pp. 396-402.

[12] T. Palpanas and A. Mendelzon, “Web prefetching using partial match
prediction”, Proceedings of Web Caching Workshop, March 1999.

444

