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Abstract

We give ansatzes obtained from Lie symmetries of some hyperbolic equations which
reduce these equations to the heat or Schrödinger equations. This enables us to
construct new solutions of the hyperbolic equations using the Lie and conditional
symmetries of the parabolic equations. Moreover, we note that any equation related
to such a hyperbolic equation (for example the Dirac equation) also has solutions
constructed from the heat and Schrödinger equations.

1 The real, linear wave equation

The real linear wave equation is

2u = −m2u, (1)

where

2 =
∂2

∂x2
0

− ∂2

∂x2
1

− ∂2

∂x2
2

− ∂2

∂x2
3

.

The symmetry algebra of equation (1) is known:

Theorem 1 Equation (1) has maximal Lie point-symmetry algebra < Pµ, Jµν , D, L >,
where

Pµ =
∂

∂xµ
, Jµν = xµPν − xνPµ, D = xµPµ, L = u∂u

when m2 6= 0, and < Pµ, Jµν , D, Kµ, L > when m = 0, where

Kµ = 2xµD − x2Pµ − 2xµL.

We have used the usual summation convention and x2 = xµxµ and µ, ν = 0, 1, 2, 3.

Until 1994, exact solutions of equation (1) were obtained using reductions of the sub-
algebras < Pµ, Jµν , D > and < Pµ, Jµν , D, Kµ >, leaving the symmetry operator L unex-
ploited. One can use L in the following way: let k 6= 0 be a real constant and α a constant
four-vector. Then it is clear that equation (1) is also invariant under the operator

αµPµ + kL.
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This operator gives rise to the invariant-surface condition

αµ ∂u

∂xµ
= ku

which yields the Lagrangian system

dxµ

αµ
=

du

ku
(2)

or

d(cx)
cα

=
du

ku
,

where cx = cµxµ, cα = cµαµ with c a four-vector. We now choose α to be light-like and
β, δ, ε space-like with

αβ = αδ = βδ = βε = δε = 0, β2 = δ2 = −1, ε2 = −m2

k2
, αε = 1.

Then equation (2) becomes

d(αx)
0

=
d(βx)

0
=

d(δx)
0

=
d(εx)

1
=

du

ku

which has general integral

u = ek(εx)v(τ, y1, y2), τ = αx, y1 = βx, y2 = δx, (3)

where v is a smooth function of its arguments.

We now use equation (3) as an ansatz for equation (1), and putting k = 1/2 we find
that the ansatz function v must satisfy the heat equation:

∂v

∂τ
=

∂2v

∂y2
1

+
∂2v

∂y2
2

. (4)

Thus ansatz (3) reduces the hyperbolic equation (1) to the parabolic equation (4). For
this reason we call the symmetry operator L a parabolic symmetry.

Remark 1 The “time” τ = αx in (4) is singular as it is acharacteristic of the wave
operator. Thus the Cauchy problem for (4) is related to the Goursat problem of (1), which
is discussed in [1].

It is now clear that exact solutions of (4) will lead to exact solutions of (1). The
symmetry algebra of (4) is the algebra AG2(2) =< T, Pa, Ga, J12, S,D,M > where

T = ∂τ , Pa = −∂ya , Ga = −τ∂ya −
1
2
yav∂v, M = −1

2
v∂v, a = 1, 2,

J12 = y1∂y2 − y2∂y1 , D = 2τ∂t + y1∂y1 + y2∂y2 − v∂v,

S = τ2∂t + τy1∂y1 + τy2∂y2 − (τ +
1
4
(y2

1 + y2
2))v∂v.
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The structure and subalgebra classification of this algebra are given in in [2], where
solutions based on this subalgebra analysis are given. Some exact solutions are the follo-
wing.

The subalgebra 〈D + (4a + 1)M, P2〉 (a ∈ R) gives the ansatz

v = τ−(a+3/4)ϕ(ω), ω =
y2
1

τ
,

where ϕ satisfies

4ωϕ̈ + (2 + ω)ϕ̇ +
(

3
4

+ a

)
ϕ = 0.

The solutions of this equation are given in terms of the Pochhammer-Barnes confluent
hypergeometric function (see for example [4])

Φ(a; b; z) =
∞∑

n=0

(a)nzn

(b)nn!

with b 6= 0 and where (a)n = a(a + 1)(a + 2) . . . (a + n− 1), n ≥ 1. We find then ([4]):

ϕ = C1 Φ
(

a +
3
4
;
1
2
;−ω

4

)
+ C2

(
−ω

4

)1/2

Φ
(

a +
5
4
;
3
2
;−ω

4

)
Thus we find the exact solution

v = τ−(a+ 3
4
)

[
C1 Φ

(
a +

3
4
;
1
2
;− y2

1

4τ

)
+ C2

(
−ω

4

)1/2

Φ

(
a +

5
4
;
3
2
;− y2

1

4τ

)]
.

and the corresponding exact solution of (1) is then

u =
e(εx)/2

(αx)(α+ 3
4
)

C1 Φ

(
a +

3
4
;
1
2
;− (βx)2

4(αx)

)
+ C2

(
− (βx)2

4(αx)

)1/2

Φ

(
a +

5
4
;
3
2
;− (βx)2

4(αx)

) .

The subalgebra < J12 + 2aM, S + T + 2bM >, (a ≥ 0, b ∈ R) yields the ansatz

v =
1√

τ2 + 1
exp

(
−b arctan τ + a arctan

y1

y2
− τω

4

)
ϕ(ω)

with ω = y2
1 + y2

2

τ2 + 1
, where ϕ satisfies

ϕ̈ +
1
ω

ϕ̇ +
1
16

+
b

4ω
+

a2

4ω2
ϕ = 0.

The solution of this equation is given in terms of Whittaker functions [4] so that we
obtain for the solution of the heat equation

v =
1√

τ2 + 1
exp

(
−b arctan τ + a arctan

y1

y2
− τ(y2

1 + y2
2)

4(τ2 + 1)

)
W

(
ib

8
;
ia

2
;
i(y2

1 + y2
2)

2(τ2 + 1)

)
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and the corresponding solution of the wave equation is then

u =
1√

(αx)2 + 1
exp

(
(εx)
2

− b arctan(αx) + a arctan
(βx)
(δx)

− (αx)((βx)2 + (δx)2)
4((αx)2 + 1)

)
×

W

(
ib

8
;
ia

2
;
i((βx)2 + (δx)2)

2((αx)2 + 1)

)
.

The above are two solutions obtained from ordinary point symmetries. It is also
possible to get solutions from conditional symmetries (see [5] )of equation (4). It can be
easily shown that one such conditional symmetry is the operator

∂y2 + A(τ, y2)v∂y2 , (5)

where the function A satisfies Burgers equation:

Aτ = Ay1y1 + 2AAy2 .

One solution of this equation is

A = − y2

2τ
− a tan

(
a2 +

ay2

τ

)
with a > 0, and the solution v of equation (4) that the operator (5) defines with this
choice of A is

v =
1√
τ

cos
(

a2 +
ay2

τ

)
exp

(
−4a2 + y2

2

τ

)
Ψ(τ, y1),

where Ψ(τ, y1) is an arbitrary solution of the heat equation. The solution of the wave
equation we now find is

u =
1√
(αx)

cos
(

a2 +
a(δx)
(αx)

)
exp

(
(εx)
2

− 4a2 + (δx)2

(αx)

)
Ψ((αx), (βx)).

2 The complex nonlinear wave equation

The complex nonlinear wave equation

2Ψ = −F (|Ψ|)Ψ (6)

has symmetry algebra as given in the following classification:

(i) when F (|Ψ|) = const |Ψ|2

∂µ, Jµν = xµ∂ν − xν∂µ, Kµ = 2xµxν∂ν − x2∂µ − 2xµ

(
Ψ∂Ψ + Ψ∂Ψ

)
,

D = xν∂ν −
(
Ψ∂Ψ + Ψ∂Ψ

)
, M = i

(
Ψ∂Ψ −Ψ∂Ψ

)
,

where x2 = xµxµ.

(ii) when F (|Ψ|) = const |Ψ|k, k 6= 0, 2:

∂µ, Jµν = xµ∂ν − xν∂µ, D(k) = xν∂ν −
2
k

(
Ψ∂Ψ + Ψ∂Ψ

)
, M = i

(
Ψ∂Ψ −Ψ∂Ψ

)
.
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(iii) when F (|Ψ|) 6= const |Ψ|k for any k, but Ḟ 6= 0:

∂µ, Jµν = xµ∂ν − xν∂µ, M = i
(
Ψ∂Ψ −Ψ∂Ψ

)
.

(iv) when F (|Ψ|) = const 6= 0:

∂µ, Jµν = xµ∂ν − xν∂µ, M = i
(
Ψ∂Ψ −Ψ∂Ψ

)
, L =

(
Ψ∂Ψ + Ψ∂Ψ

)
,

L1 = i
(
Ψ∂Ψ −Ψ∂Ψ

)
, L2 = Ψ∂Ψ + Ψ∂Ψ.

(v) when F (|Ψ|) = 0:

∂µ, Jµν = xµ∂ν − xν∂µ, Kµ = 2xµxν∂ν − x2∂µ − 2xµ

(
Ψ∂Ψ + Ψ∂Ψ

)
D = xµ∂µ, M = i

(
Ψ∂Ψ −Ψ∂Ψ

)
, L =

(
Ψ∂Ψ + Ψ∂Ψ

)
,

L1 = i
(
Ψ∂Ψ −Ψ∂Ψ

)
, L2 = Ψ∂Ψ + Ψ∂Ψ.

In all these cases we see the operator M = i
(
Ψ∂Ψ −Ψ∂Ψ

)
. Equation (6) is then

invariant under

αµ∂µ + kM, (7)

where k is real and α is a light-like constant vector. arguing as in the case for the real
wave equation, the operator (7) gives us the ansatz

Ψ = eik(εx) v(αx, βx, δx), (8)

where we now have ε2 = α2 = 0, β2 = δ2 = −1, εα = 1, αβ = αδ = εβ = εδ = 0. Putting
this ansatz into (6), we obtain, with k = 1/2,

i∂τ = −∆v + F (|Ψ|)Ψ, (9)

where we have τ = αx, ∆ = ∂2
y1

+ ∂y2
2
, y1 = βx, y2 = δx.

The symmetry algebra of (9) is also classified according to the nonlinearity, as for the
symmetry of (6). We find this symmetry algebra to be as follows.

(i) AG2(1, 2) when F (|v|) = const |v|2:

T = ∂t, Pa = −∂a, J12 = x1∂2 − x2∂1,

Ga = t∂a +
ixa

2
(v∂v − v∂v) , D2 = 2t∂t + xa∂a − (v∂v + v∂v) ,

S = t2∂t + txa∂a +
ixaxa

4
(v∂v − v∂v)− t (v∂v + v∂v) , M = − i

2
(v∂v − v∂v) .

(ii) AG1(1, 2) when F (|v|) = const |v|k, k 6= 0, 2:

T = ∂t, Pa = −∂a, J12 = x1∂2 − x2∂1, Ga = t∂a +
ixa

2
(v∂v − v∂v) ,
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D = 2t∂t + xa∂a −
2
k

(v∂v + v∂v) , M = − i

2
(v∂v − v∂v) .

(iii) AG(1, 2) when F (|v|) 6= const |v|k, for any k, but Ḟ 6= 0:

T = ∂t, Pa = ∂a, J12 = x1∂2 − x2∂1,

Ga = t∂a +
ixa

2
(v∂v − v∂v) , M = − i

2
(v∂v − v∂v) .

(iv) AG2(1, 2) when F = 0:

T = ∂t, Pa = ∂a, J12 = x1∂2 − x2∂1, Ga = t∂a +
ixa

2
(v∂v − v∂v) ,

S = t2∂t + txa∂a +
ixaxa

4
(v∂v − v∂v)− t (v∂v + v∂v) , M = − i

2
(v∂v − v∂v)

D = 2t∂t + xa∂a, L = (v∂v + v∂v) .

Exact solutions of the nonlinear Schrödinger equation (9) are of course quite difficult to
obtain. We mention one type of solution obtained through invariance under the subalgebra
< P2, T + 2aM > with a ∈ R. The ansatz built from this subalgebra is

v = e−iτφ(y1)

and substitution into (8) gives the following equation for φ:

φ̈ + aφ = F (|φ|)φ.

Specialising to F (φ|) = κ|φ|2 and writing φ = ρeiθ with ρ, θ functions of y1, we find that
ρ and θ satisfy the equations

ρ̈ + aρ− ρθ̇2 = κρ3,

ρθ̈ + 2ρ̇θ̇ = 0,

from which one easily deduces ρ2θ̇ = A where A is a constant. Substituting this back into
the first equation of the system and integrating, we get

ρ̇2 + aρ2 +
A2

ρ2
=

κ

2
ρ4 + C,

where C is another integration constant. Put now A = 0, a 6= 0 and we find

ρ̇2 + aρ2 − κ

2
ρ4 = C

an equation which is solvable in terms of Jacobian elliptic functions E(y1, r), where r is
a real number with |r| < 1 . After some elemntary manipulations using our ansatzes, we
find that

Ψ = exp
(
− i

2
[(εx) + a(r)(αx)]

)
E((αx), r).

is a solution of

2Ψ = −κ(r)|Ψ|2Ψ
The elliptic function E(ω, r) and the parameters a(r), κ(r) are given in the following
table:
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E(ω, r) a(r) κ C(r)
sn 1 + r2 2r2 1
cn 1− 2r2 −2r2 1− r2

dn r2 −2 r2 − 1
ns = 1/sn 1 + r2 2 r2

nc = 1/cn 1− 2r2 2(1− r2) −r2

nd = 1/dn r2 − 2 2(r2 − 1) −1
sc = sn/cn r2 − 2 2(1− r2) 1
sd = sn/dn 1− 2r2 2r2(r2 − 1) 1
cs = cn/sn r2 − 2 2 1− r2

cd = cn/dn 1 + r2 2r2 1
ds = dn/sn 1− 2r2 2 r2(r2 − 1)
dc = dn/cn 1 + r2 2 r2

More details of the analysis and other exact solutions are contained in [3].

The ansatz (8) for equation (6) works also for many other types of nonlinearities. For
instance the equations

2Ψ = λ
|Ψ|µ|Ψ|µ
|Ψ|2

Ψ (10)

is reduced by the ansatz to the equation

ivτ + ∆v = λ
|v|a|v|a
|v|2

v (11)

which admits the solution

v = sech(a · (y −Vτ)) exp

(
−i

[
a2τ +

V · y
2

− V2τ

4

])

which yields

Ψ = sech (a1(βx) + a2(δx)− a · bfV (αx))×

exp

(
−i

[
−(εx)

2
− a2(αx) +

V1(βx) + V2(δx)
2

− V2(αx)
4

])

as a solution of equation (10) . We may think of equation (10) as a relativistic generalisa-
tion of (11). Equation (11) was studied in [6] in the context of Galilean-invariant nonlinear
Schrödinger equations.

3 Conclusion

We have shown that there is a Lie-algebraic connection between the wave equation (real,
linear and complex, nonlinear) and the heat and Schrödinger equations. This allows us
to construct solutions of hyperbolic equations from solutions of parabolic ones. More-
over, it is clear that we can use the free Schrödinger equation to construct solutions of
the Dirac equation. Indeed, the four components of the Dirac spinor satisfy the complex
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Klein-Gordon equation, which, with our ansatz, reduces the four Klein-Gordon equations
to four Schrödinger equations. Exact solutions of these give exact solutions of the Dirac
equation. If we use the operator L, we find that we can construct solutions of the Dirac
equation from the heat equation, or a mixture of the heat equation and Schrödinger
equation. A similar connection exists between the heat equation and Maxwell’s equations
and the Lamé equation (written in potential form). These equations will be studied in
future publications. There are other hyperbolic equations which allow a reduction to a
parabolic equation. One notable equation is a relativistic equation obtained by Guéret
and Vigier ([7]) for de Broglie’s double solution. Our ansatz reduces it to a nonlinear
Schrödinger equation which was proposed by Guerra and Pusterla ([8]) as an nonlinear
equation having the probabilistic interpretation of a linear Schrödinger equation. Thus, it
seems that our ansatz has some significance beyond the purely mathematical one, and this
connection provides a reason for investigating the symmetry properties and exact solutions
of these two equations.
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[4] Erdélyi A., Magnus W., Oberhettinger F. and Tricomi F.G., Higher Transcendental Functions (Bate-
man Manuscript Project), New York, McGraw-Hill, 1953.

[5] Fushchich W., Shtelen W., Serov M., Symmetry Analysis and Exact Solutions of Equations of Non-
linear Mathematical Physics, Kluwer, Dordrecht, 1993.

[6] Fushchych W., Cherniha R., Galilei invariant nonlinear equations of Schrödinger type and their exact
solutions, Ukrainian Math. J., 1989, V.41, 1161–1167; 1456–1463.
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