
TEM: A Novel Measurement Method for Java Applications on demand in Cloud

Computing

Haihe Ba, Songzhu Mei, Jiangchun Ren, Zhiying Wang

College of Computer, National University of Defense Technology, Changsha China

E-mail: bahaihe@hotmail.com

Abstract—While Cloud computing brings much convenience to

companies; it also produces many a threat to information

security. TEM is a Java-based architecture that gives strong

safety guarantees to high-assurance Java applications in cloud

computing. TEM advances the state of the art in Java Virtual

Machine in both the design of its own fine-grained integrity

measurement on demand and in the ability to ensure

recoverability in the face of malicious attacks. In this paper, we

introduce TEM, as a novel fine-grained measurement method

for Java application, which takes advantages of the structural

feature of Java class file. It not only satisfies users’ necessary

trust from the trusted platform module, or TPM, but also has

less impact on running performance in cloud environment.

Keywords-TEM, Cloud computing, fine-grained, TPM

I. INTRODUCTION

Cloud computing has generally emerged as one of the
most influential technologies in both the industry and
academia about information technology. As a novel
computing resource organizing methods, cloud computing
can offer scalable, flexible and unlimited application services
to enterprises. As a result, many designate their application
services to the cloud, however, they are not able to be aware
whether the services is tampered to be untrusted

[12]
.

As a pure object-oriented programming language, Java is
widely used in many fields, such as embedded systems,
mobile devices, servers and so on. Also, it is more and more
popular in cloud computing. It is largely due to its own byte
code structure, independent of hardware platform.

Nowadays, with the rapid development of Java, many a
technology has been proposed to fulfill the need for security
in Java Virtual Machine

[4]
. One of them is trusted computing

which attracts wider attention. Trusted computing can give
Java applications enough protections from the low-level
hardware. Whereas, their chief focus is always on the
integrity of entire application files that is too coarse-grained
to meet realistic secure demand

[1][2]
.

In this paper, we propose TEM to support the trust of
Java applications guarantee in cloud computing. TEM has
three significant advantages:

 Fine-grained measurement on demand. TEM makes
utilization of the feature of Java class file to measure
and verify every class to provide strong security for
Java applications. And it takes advantages of Java
Class Loader to have Java applications to measure
on demand.

 High availability. TEM employs recovery and/or
backup mechanism to support Java application
availability with the lower cost, which is just to
redirect the loading path.

 Trusted-degree management. According to the
loading behavior of every class in some Java
application, TEM makes use of Trusted-Degree
Calculator component to evaluate trust degree of the
Java application. Then, it gives users the trust value
to support to make next action on the application.

The rest of this paper is organized as follows. Section II
introduces the background about cloud computing, Java class
file format, Java virtual machine and trusted computing.
Then we provide the main motivation of TEM in Section III.
Section IV is the design and implementation of TEM. Finally,
Section V and Section VI cover the related work and
conclusion of this paper.

II. BACKGROUND

A. Cloud Computing

National Institute of Standards and Technology, or NIST,
has proposed the cloud model is composed of three service
models

[6]
.

 Infrastructure as a Service, or IaaS. It virtualizes IT
infrastructure to elastic resource pool, where
consumers is able to deploy and run any software
from operating systems to the top applications.

 Platform as a Service, or PaaS. It provides some
programming languages and tools to create and
deploy users’ own applications.

 Software as a Service, or SaaS. It gives consumers
the providers’ applications running in the cloud to
use.

Consumers could use any of above models to deploy
their applications according to the functionally and security
concerns.

B. Java Class File Format

Java application is usually organized by a set of classes,
part of different packages. Every class is compiled into a
specific class file format by the compiler; and the Java
interpreter executes these files at the runtime. The Java class
file is an architecture-neutral byte format, with the feature of
"compile once, run everywhere". It provides binary formats
independent of the underlying platform to allow the Java

International Workshop on Cloud Computing and Information Security (CCIS 2013)

© 2013. The authors - Published by Atlantis Press 487

applications to run on any hardware platforms and any
operating systems

[3]
as long as it has Java virtual machine on.

Java application is typically packaged as JAR or WAR
file, which is similar to the popular ZIP file format to
aggregate many class files and other resources into one file.
They not only are used to compress and release, but also
allow Java applications at the runtime to deploy a set of
classes and their associated resources.

C. Java Virtual Machine

Java Virtual Machine, or JVM is the core of the Java
technology system. It is also the foundation stone for Java
applications to achieve the feature of platform independence.
JVM has defined a specific platform-independent instruction
set to encapsulate its specific platform language features.
The Java class file is parsed into a platform-independent
instruction stream and further translated to the specific
underlying machine instructions inside the Java Virtual
Machine.

The Java Class file is loaded by class loaders. It supports
dynamic class loading

[5]
in the Java virtual machine. There

are three loaders that is, boot class loader, extension class
loader and application class loader together to complete the
loading process of the Java application in the typical JVM. It
is called a parent delegation model: if you receive the request
to load a given class, this first thing you do is to delegate it to
your own parent class loader. Every loader does in the same
way until the boot class loader. Only when the parent could
not load the given class to the memory, does it try to operate
itself independently.

D. Trusted Computing

In October 1999, Intel, Microsoft, IBM, Compaq and HP
corporations have co-founded Trusted Computing Platform
Alliance, or TCPA. And in March 2003, it was renamed
Trusted Platform Group, or TCG.

TCG has proposed a trusted measurement chain model:

BIOS Boot Block → BIOS → OS Loader → OS. Along this

chain, the higher levels measure and verify the lower to
ensure the security of computing system and give the trust
guarantee to computing platform

[7]
. The root of trust in this

chain comes from a hardware component on the
motherboard of a platform called Trusted Platform Module,
or TPM, with its trusted software stack, or TSS

[8]
.

The object of measurement in the chain is trust, but it is
hard to be directly measured. Instead, we usually select
program integrity as the object, that is, the hash value of
applications produced by some well-studied hash function.
Then we check whether it is modified. It is often generated
by extended calculation: New PCRi = Hash (Old PCRi || New
Value). In this calculation, new values are linked to the
original to build a new hash value as new measurement value,
which can improve storage utilization effectively

and provide

consistency about computing system’s behavior
[11]

.
The remote attestation is used to attest the trust state of

an entity to a remote entity, which is referred as integrity
reporting and applied in a mountain of applications by
different companies.

III. MOTIVATION OF TEM

A. Threat Model

With the rapid development of the cloud computing,
applications’ design and deploy pattern has been gradually
shifting to higher application platform. It is the main reason
that Java is very popular in enterprise information system as
well. Nevertheless, it has been suffering from more and
more malicious attacks.

TEM does not address application-level bugs, and will
not stop an application that deliberately divulges secret data.
TEM can detect a tampered application according to its
integrity digest table. Also, TEM has an ability to find out
dummy clients no matter what a bit it just modifies.

More subtle availability attacks are possible, such as
deleting volatile data, which will be detected in a timely
manner, but may lead to the loading failure and fail to
provide continuous services. To solve above problems, we
make TEM support the Java applications’ availability by
using backup and recovery technique.

B. Inheritance Relations of Java Class Loader

AppClassLoader

URLClassLoader

SecureClassLoader

ClassLoader

Figure 1. Inheritance relations of Java Class Loader

From the view of inheritances between Java Class Loader,
we see Java Class Loader consists of four diverse class
loaders as the Figure 1 is shown. From the top, it is
AppClassLoader, an enter to load classes. Then we call the
next URLClassLoader that finds and locates the resource in
which the loading class is. SecureClassLoader has an
implement of Java policies. What is at the lowest level is
ClassLoader, which makes parent delegation model come
true.

We have URLClassLoader to be reconstructed because
of the important role it has. First, we need to know the
loading class’s location and its byte stream for the purpose of
measurement and verification. Second, we expect not to
have extra influence on Java Class loader’s process as far as
possible. Third, we hope that it can be suitable for not only
common Java applications, but also Java web application
containers, such as tomcat, etc.

C. TEM Role

As Figure 2 is pointed out, TEM has a significant role in
trust chain. From the view of application developers, TEM

488

gives strong security guarantees to the top Java application.
As for the underlying hardware developer, it expends the
trust chain to the application level. Also, we uses the JNI
technique to encapsulate trusted software stack, or TSS,
which is across the operating system to make TEM more
trusted by using the hardware chip’s API. It is made into
trusted Java API to invoked by TEM to realize the basic
mechanism, such as measurement, verification, encryption,
attestation and so on.

Trusted Platform Module

Operating System

TEM
Class

Loader

Trusted
Java API

App App

TSS

App

Trust-enhanced JVM

Figure 2. The role of TEM in the trust chain.

In the Figure 2, we see that both the TEM and Java Class
Loader have worked on cooperation. Without the help of
TEM, the Java Class Loader could not start out as usual.
With respect to TEM, it has some main functions:

 Integrity Measurement. It invoke the trusted Java
API to measure and/or verify the integrity of the
loading class on demand.

 Recovery Mechanism. When the application passes
before the loading time, it is bound to be backed up
in a security position. The TEM would redirect the
resource’s path to security position once the loading
class is proved to be invalid at the loading time.

 Trusted Audit. TEM records a series of operations in
a logger as TEM and Java Class Loader are on.

 Trust-Degree Evaluation. TEM evaluate the loading
behaviors to generate diverse trusted-degrees, which
provides reference criteria to take next action.

IV. DESIGN AND IMPLEMENTATION

The most significant shortcomings of traditional integrity
measurement is the coarse grain manner, which is far from
the need of high-assure process events. And traditional ways
always ignores the availability of the application, that is , it
could not perfectly support that service has been running

without incurring downtime even though it fails to prove
itself own integrity. In addition, it is out of so performance
that is hardly to take log in account.

We present TEM which is a novel measurement method
in Java Virtual Machine to solve above problems and have as
less impact on system performance as possible. It expends
the trust chain to the isolated Java applications, which even
TPM does not.

A. TEM Architecture

The architecture of TEM are shown in Figure 3. A TEM
at least has eight core components. The components include:

TPM

App

Analyzer

Measurer

Verifier

Logger

Reporter

Pre-measure
Tester

Backup/
Recover

Trusted-
Degree

Calculator

TEM

Figure 3. TEM architecture.

 Pre-measure Tester. This components parses an
application as well as its own digest table to
guarantee it against tampered by malicious software
and prove its source to be trusted. If some passes,
Pre-measure Tester would store the digest table into
a secure storage media. At the meantime, it drives
Backup/Recover to safely copy an application into a
trusted position.

 Analyzer. It is responsible to interact with Java Class
Loader and/or Backup/Recover component at the
loading time. It is to get byte streams from them.

 Measurer. This component invokes the underlying
TPM’s functional interface to enhance itself security.
It makes use of JNI, which Java provide to interact
with C or C++ to improve the Java execution
environment performance. We employ JNI to
encapsulate TSS to produce trusted Java API to
support Measurer and Logger.

 Verifier. By using the digest value of the loading
class produced by Measurer and the reference value
from the digest table, it verifies whether the loading
class is trusted. If the result is not integrity at the first
time, it enforces Backup/Recover component to
redirect the resource’s path to re-load this class.

489

Once it fails to recover the classes, it would stop
current load process and feed failure information
back to Reporter.

 Backup/Recover. This component has two core
functions: one is that backups some application
proved trusted by Pre-measure Tester; the other is
that supports recovery mechanism for the loading
class which is verified to be untrusted for the first
time.

 Reporter. This component accepts Verifier about
measurement results and generate an integrity report
with respond to the users’ attest request.

 Logger. In company with underlying TPM, it records
certain application’s loading activities securely, and
is able to respond others’ attest requests including
users and remote party and so on.

 Trusted-Degree Calculator. In the traditional fashion,
trusted computing looks upon the relationship of
trust on an all-or-none problem. Nevertheless, in the
real world, is a dynamic, on-changing relationship.
This component is used to calculate the application’s
trusted-degree in a dynamic way, based on the
behavior about loading and recovery.

We offer trusted Java API to Measurer for two aspects of
reasons: for one thing, it can have as less influence as on
execution performance; for another thing, it has power to
achieve more security in comparison to directly invoking the
API about security from Java.

B. Trusted-Degree Estimate

Trust is a hypothesis about a future behavior, inferred
with the current state of certain application. As a result, we
take into account the loading result to calculate the trusted-
degree. The loading result may include one of the situations:
fail to recover (failure), recover successfully (recovery), load
successfully without recovery (success).

For estimating the trust-degree of some application, we
build a three-level model. As depicted in Figure 4, the root
node of the model stands for the entire trusted-degree T of an

application. The trusted-degree [0,1]T  , where 1 means

the application can be trusted absolutely while 0 means the
application is untrusted

[10]
. The children-nodes of the root

node represent the jar file beliefs that belongs to the
application. The leaf nodes of this model is fine-grained class
files, which belongs to certain jar file.

T

P1 P2 Pm

C11 C12 C1j C21 C2k C31 C3n

W1 W2

W11

Wm

W12 W1j W21 W2k W31 W3n

Figure 4. Trusted degree model

The trusted-degree value of the application is given by
these formulas:

1
i

m

app i PT W T 

1
i ij

n

P ij CT W T 

iW is the weight of each jar file’s belief;

ijW is the weight of each class file’s belief.

When estimating the trusted-value of a class file, we use
this formulas as the basic mathematic tool.

0

0.5

0
ijC

failure

T recovery

success




 



C. Test Results

This test is based on the Java Virtual Machine, which is
OpenJDK version 6, running on an Intel Core

TM
 i3 2.20GHz

machine with 2GB of RAM, and Debian 6, with TPM
Specification Version 1.2. We did some functional and
performance tests to determine the achievement of TEM.

The functional test’s details are shown in Table I and
Table II. We use the test suit to do three groups of
experiments. From the table, we see that JVM with TEM can
effectively identify and locate the Jar package and its own
classes which are modified.

TABLE I. TEST SUITS FOR TEM

Test Suite Usage

Tomcat Application container

Netbeans Integrity development environment

CXF Java Web Service

Hibernate Data persistency framework

Struts MVC framework

Spring Inverse of control framework

TABLE II. FUNCTIONAL TEST

description Times Accuracy Availability

Jar package is modified. 1000 100% 100%

One class is missing. 1000 100% 100%

A bit in some class is modified 1000 100% 100%

We use Java Grande benchmarks to test performance
impact which our TEM brings to JVM at the loading time.
For this, two different kinds of experiments is designed. First
of all, we make TEM unable to gain the loading time. In this
situation, we run the Serial benchmark of Java Grand’s
Section 3 benchmarks. On the other hand, we make JVM
along with TEM in the same condition. The test results are
given out by Table III. In this table, we see that it has a
significant increment in the loading time when JVM works
with TEM compared with original JVM. Yet, it only occurs
to this loss at the loading time and it has little influence on
the running performance. it is acceptable just because it is at
the seconds level, which users hardly sense.

490

TABLE III. PERFORMANCE COMPARISON AT THE LOADING TIME

benchmark original JVM (s) JVM with TEM (s)

Euler 0.01868651 1.82454909

MolDyn 0.02656407 1.83402396

MonteCarlo 0.02268057 3.76024453

RayTracer 0.02087416 3.09892023

Search 0.02184764 3.26334720

Also, we use SPECjvm2008 to determine the impact that
our TEM brings to Java applications at the running time,
which takes the applications’ loading time into consideration.
We design two opposite experiments to do this test. First,
original JVM is used to get operations every minute of every
benchmark in SPECjvm2008. Second, we make JVM with
TEM to achieve operations every minute of all benchmarks
of SPECjvm2008. Figure 5 show the details about these
results.

Figure 5. This is performance comparison for the running applications

between original JVM and JVM with TEM. This takes the loading time and

the runtime of Java applications altogether into account.

From Figure 5, we find that JVM with TEM could
strengthen trusted protection to top Java applications with the
accepted loss. Even, the TEM hardly affect the running
performance of the Java applications. In comparison to the
performance overheads, the extra loading time along with
TEM is too little to having an effect on the running
applications’ performance.

V. RELATED WORK

A large amount of research has been done on trusted
computing, mostly on the improvement of trusted computing
itself or Java applications.

There is some prior work that aims to make the Java
applications more trusted. In Ref. 5, Liang and his partners
introduce dynamic class loading in JVM, with many
advantages, such as type-safe linkage which guarantees type
safety

[5]
. Though this support for Java is powerful, it does

not have a mechanism to measure and verify Java class
integrity with more formidable hash algorithm; for instance,
SHA-256, SHA-384 and SHA-512. In Ref. 9, Shi et al.
propose transitive trust in Java Virtual Machines, which
extends trust chain to JVM and enhances Java application’s
trust by class loaders

[9]
. However, it concentrates more on

control flow of class loading in JVM and does not make full
use of measurement technology.

VI. CONCLUSION

Java Virtual Machine ensures that class is loaded on
demand and class is not loaded by the same class loader
again. According to the features of the Java class file format,
we design TEM to realize the measurement mechanism on
demand to support Java applications integrity guarantee in
cloud computing. In other words, they would not be
measured once again. To improve the top applications’
availability in cloud computing , we provide trusted backup
mechanism for recovery at the loading-time. With the secure
log, it make the system audit at the convenience.

ACKNOWLEDGMENT

This work was supported in part by the National Natural
Science Foundation of China (NSFC) under grant
No.60903204.

REFERENCES

[1] Shen changxiang, Zhang Huanguo, Feng Dengguo, Cao Zhenfu,
Huang Jiwu. Survey of Information Security, Science in Chian Series
F, 2007, 50 (3): 273-298.

[2] Shen Changxian, Zhang Huanguo, Wang Huaimin,Wang Ji, et al.
Researches on Trusted Computing and Its Developments[J]. Science
China: Information Science, 2010, 53 (3):405-433.

[3] B. Venners. Inside the Java 2 Virtual Machine, Second Edition. Jan.
2002.

[4] L. Gong, G. Ellison, M. Dageforde. Inside JavaTM 2 Platform Security:
Architecture, API Design and Implementation, Second Edition, Jan
2003.

[5] S. Liang, G. Bracha. Dynamic Class Loading in the Java Virtual
Machine. Proceeding of the ACM Conference on Object Oriented
Programming System, Languages and Applications, Vancouver,
British Columbia, pp.36-44, October 1998.

[6] P. Mell and T. Grance, The NIST Definition of Cloud Computing
version 15, http://csrc.nist.gov/groups/SNS/ cloud-computing,
National Institute of Standards and Technology. Gaithersburg, MD,
2009.

[7] Trusted Computing Group. TPM Specification Version 1.2. http://
www.trusted-computinggroup.org/resource/tpm_main_specification.
Trusted Computing Group, 2007.

[8] D. Challener, K. Yoder, R. Catherman, D. Safford, L.V. Doorn. A
Practical Guide to Trusted Computing. 2007.

[9] Y. Shi, Z. Han, C.X. Shen. The Transitive Trust in Java Virtual
Machines. Proceedings of the Eighth International Conference on
Machine Learning and Cybernetics, pp.12-15, July 2009.

[10] Jigar Patel, W. T. Luke Teacy, Nicholas R. Jennings, and Michael
Luck. A Probabilistic Trust Model for Handling Inaccurate Repution
Source. Trust Management, Third International Conference, iTrust
2005, Paris, France, 193-209, May 23-26, 2005, Proceedings.

[11] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van doorn.
Design and Implementation of a TCG-based Integrity Measurement
Architecture [C]. In Proceedings of the 13th USENIX Security
Symposium, August 9-13, 2004, San Diego, CA, USA, pages:223-
238.

[12] Robinson, N., Valeri, L., Cave, J., Starkey, T., Graux, H., Creese, S.,
Hopkins, P.: TheCloud: Understanding the Security, Privacy and
Trust Challenges. RAND Corporation, California , 2011.

491

