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Abstract—With the prevalence of cloud computing, more and 

more data are outsourced to the untrusted cloud servers, 

which raises a security issue that how can data owners ensure 

the privacy of their data in cloud. A straightforward way is to 

encrypt the data before uploading, but it will face new 

challenge when data owners need to search on their encrypted 

data. 

      Searchable encryption will help to solve this problem by 

enabling the cloud servers to perform searching for the data 

owners while not learning any information about the data and 

the searching criteria. 

      Range query on large encrypted data set is one of the most 

difficult parts of searchable encryption. In this paper, we 

proposed a novel scheme which improves the security and 

avoids any false positive. And the evaluation shows that our 

scheme reduces client storage and remain efficiency compared 

with the existing schemes. 

Keywords-Searchable Encryption; Range Query; Cloud 

Security 

I.  INTRODUCTION  

 

The term of cloud computing refers to massive computing 

and storage resources offering on-demand services over a net-work. 

However the cloud users will face the privacy problem after 

their data is sent to the cloud. Usually outsourced data is 

encrypted to preserve its privacy and integrity. This brings a 

challenge of how to do search operation on outsourced data in 

the encrypted form. A trivial solution is to send all the 

encrypted data in cloud back to the client, then decrypt it to do 

the search operation on plaintext. This solution oblivious 

contains drawback on efficiency. 

The topic of searchable encryption dedicates to solve the 

problem of searching on encrypted cloud data both in effi-

cient and secure way. Typical searchable encryption [10] [3] 

research about the searching on a document set to get the doc-

uments that contain specified keywords. Curtmola introduced a 

representative scheme of typical searchable encryption [3]. He 

proposed two revised security models, non-adaptive secure and 

adaptive secure, and also provided two constructions matching 

these two models. We will modify his security models to 

propose a security model for range queries on encrypted data. 

Range queries on outsourcing databases is another well 

studied topic of searchable encryption [1] [4]. Be different with 

the typical searchable encryption, range queries on encrypted 

data dedicates to solve the searching on some attributes by a 

query range, which is usually represented by a attribute 

like[1,100].  The  cloud  returns  the  results   and computing. 

which satisfy the query range. For example, an internet service 

provider may outsource web logs to cloud. He may want to 

query this data to analyze traffic patterns by date ranges and IP 

address ranges specified as 128.54.* etc. 

The attribute based encryption (ABE) is a public-key 

encryption [5] [6] which treats the query range as an attribute in 

ABE, it offers provable security for asymmetric encryption, but 

this type of solution suffers from high computation overhead. 

Order-preserving encryption-based techniques [8] [9] which 

ensure that order amongst plaintext data is preserved in the 

ciphertext domain. These solutions achieve efficiency but the 

leakage of relative order among ciphertext domain may be 

exploited by the adversary to compromise the security. 

Prefix-preserving encryption [2] encrypts the query-attribute 

of each record such that a prefix shared in two plaintexts is 

preserved in the corresponding ciphertexts, which means the 

ciphertexts share a same length prefix with plaintexts. The  

prefix-preserving  ciphertexts  lead  the  scheme  to  leak 

information about etuple order rapidly. 

Bucketization-based techniques [1] [4] use distributional 

properties of the dataset to partition and index them for 

efficient querying. This solution can keep a minimum 

disclosure and achieve efficiency but it suffers from various 

limitations such that bucket indices must be stored and searched 

locally at the client site. What
′
s more, this scheme will induce 

false positives. 

[11] proposed a scheme using symmetric scalar-product 

preserving encryption to build a hierarchical encrypted index, 

this  scheme  can  search  efficiently  but  still  contains  false 

positives. 

Our contribution. In this paper, we make the following 

contributions. We propose a scheme based on a secure index 

for  range  queries  on  encrypted  data  which  improves  the 

security and avoids any false positive. We modify Curtmola′s 

[3] non-adaptive secure security model to suggest an non-

adaptive secure security model for range queries on encrypted 

data. This model has a strong security that many existing 

schemes for range queries on encrypted data can not satisfy it. 

We will prove that our scheme can satisfy the non-adaptive 

secure security model of range queries on encrypted data. 

Our scheme sacrifices some storage on cloud to improve 

security, but our scheme deduces the client cost both in 
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storage.And our scheme remains efficiency compared with the 

existing schemes. What’s more, our scheme will not induce 

any false positive. 

Table 1 shows the comparison of our construction with 

some competing schemes. As the table shows, our construction 

gets advantage especially at the client computation and client 

storage. We believe that our scheme can achieve the highest 

security among the existing schemes. A strict analysis will be 

completed in our future work. 

Although supporting dynamic operations such as add or 

delete operation for the range queries encryption is difficult for 

many schemes. We find that with slight modification our 

scheme can support dynamic operations well. 

 

II.  RELATED WORK 

 

Attribute Based Encryption. The attribute based 

encryption (ABE) [5] [6] is a public-key encryption that a user
′
s 

keys and ciphertexts are associated with sets of descriptive 

attributes and a particular key can decrypt a particular 

ciphertext only if the cardinality of the intersection of their 

labeled attributes exceeds a certain threshold. With slight 

modification, ABE can be applied to the scenario of range 

query encryption. These schemes provide provable security for 

outsourced data and queries, but a limitation of ABE is that 

attributes are revealed in ciphertext, which is not acceptable in 

the cloud scenario. And the computation on public-key 

encryption may led to suffer from high computation overhead 

is another limitation. 

Order-Preserving  Symmetric  Encryption.  In [8] 

[9], Boldyreva et al. proposed the Order-Preserving 

Symmetric Encryption (OPSE). In OPSE the ciphertext 

preserves the order property of plaintext. For 

example,  mE denotes the encryption of plaintext m , 

if 21 mm  then  1mE  >  2mE as a result in OPSE. The 

authors showed that the highest security of OPSE is 

indistinguishability under ordered chosen plaintext attacks 

(IND-OCAP). However the authors proved that no OPSE 

scheme could reach the IND-OCPA security. Although they 

proposed another security definition, OPSE still reveals the 

ordering of encrypted tuples, which can lead to substantial 

privacy loss. 

Bucketization-Based Techniques. In [1] [4], Hore et 

al. proposed a scheme based on a bucketization techniques 

which partition the data into a set of buckets. Each bucket 

is assigned a random index tag making every element 

within a bucket indistinguishable from another. The indices 

of buckets are kept in the client side. To process a range 

query, then client have to translate the query to tags of 

buckets by indices. The cloud return the corresponding buckets 

using such tags. An oblivious limitation of bucketization-based 

techniques is that it will induce false positives which means 

that a query response  includes  all  the  tuples  in  all  matching  

buckets. Another limitation is that client has to retain the 

indices at his site. And the index search complexity in client 

side will increase linearly with the number of buckets. 

 

III. DEFINITION OF RANGE QUERIES ON 

ENCRYPTED  DATA 

 

We use curtmola's [3] definition but make some 

modifications that extend the search criteria from single 

keyword search to range query search. 

A. Basic Notations 

n  Number of tuples 

ir
 Plaintext of tuple,1≤i≤n 

R  All plaintext tuples set,  ni rrr ,..., 2  

ie  Encrypted tuple(etuple), 1≤i≤n 

E  All etuples,  neee ,...,, 21  

I  Secure index 

w  A query range denoted by two values 

W  A query range set,  qwww ,...,, 21  

t  A trapdoor of query range w  

 wR  A tuple set satisfied the query range w  

 tE  A etuple set satisfied the trapdoor t  

 

B. Definition of Index Based Range Queries On Encrypted 

Data 

 

We define a scheme based on a secure index for range 

queries  on  encrypted  data  which  is  composed  of  five 

polynomial-time algorithms (GenKey, Encrypt, Trapdoor, 

Search, Decrypt) such that. 

K ← Gen  k1 :is a probabilistic key generation 

algorithm that is run by the user to setup the scheme. It takes 

as input a security parameter k , and outputs a secret key K . 

 EI , ←Encrypt  RK , : a probabilistic algorithm run 

by the client to encrypt tuple set R . It takes the secret key 

K and the tuple set to be encrypted R as inputs. And the 

results of this algorithm are composed of two parts: a secure 

index I and an encrypted tuple set E =  ni eee ,...,, 2 , ie  is 

the encrypted form(etuple) of ir   ni 1 . The secure 

index and the ciphertext of tuple set will be sent to the 

server after generation. 

t ←Trapdoor  wK , : a deterministic algorithm run by 

the client to build a trapdoor on the query range w . The 

trapdoor will be sent to the server after generation. 

 tE ←Search  tI , : a deterministic algorithm run by 

the server to make a search. It takes a secure index I and a 

trapdoor t as inputs, and the search results  tE , which 

means the tuple set that match the query range w . 
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ir ←Decrypt  ieK , : a deterministic algorithm run by 

the client to decrypt the ciphertext of a single tuple. 

An scheme based on secure index for range queries on 

encrypted data is correct if for all Nk , for all K output 

by  k1Gen , for all  ieI , output by  iI,eEncrypt , for 

all w , 

       iK retEwI  iDecryptTrpdr,Search  

for ni 1  

C. Security Definition of Range Query On Encrypted Data 

 

      Curtmola [3] introduced two security models, non-

adaptive secure and adaptive secure of SSE(Searchable 

Symmetric Encryption) scheme. These models provide 

strong security guarantee for SSE. We will propose a similar 

security  model for range queries on encrypted data based on 

the non-adaptive security model of SSE. 

 

 
Properties Bucketization Order-Preserving Enc Prefix-Preserving Enc Our scheme 
Client Computation O(n/B) O(δ) O(Kslog

2
|D|) O(Kp) 

Client Storage(Bits) O(n/B) O(δlog|D|+log(N )) O(log(N )) O(log(N )) 
Server Computation O(n/B) O(|C|+log(n)) O(|C|+log(n)log|D|) O(|D|) 
Query Send Size(Bits) O(C/B) O(log|D|) O(log

2
|D|) O(log|D|) 

False Positive yes no no no 

Table 1. Costs comparison to existing schemes. n is the number of tuples, B is the bucket size of bucketization scheme, C is the result set size. Ks 

and Kp are costs of symmetric encryption and permutation operations, respectively. δ for OP E is small with unknown relation to n. N is a 512-4096 
bit number. 

  

History. A q-query history over a tuple set R  with n  

tuples is defined as  WRH , , while w  is a sequence of 

q  query ranges  qwwwW ,...,, 21 . 

Access Pattern.   The   access   pattern   induced   by a  q-

query  history  ),( WRH  ,  is  the  tuple  

        qwRwRwRH ,...,, 21  

Search Pattern. The search pattern induced by a q-query 

history  WRH , , is a symmetric matrix σ(H) such that 

for qji  ,1 , the element in the 
thi  row and 

thj  column 

is 2 if the pair value of query iw  are same with jw  , the 

element in the 
thi  row and 

thj  column is 1 if one of the pair 

value of query iw  is same with one of the pair value of query 

jw , and 0 otherwise. 

Trace. The trace induced by a q-query history 

 WRH , , is a sequence       HHnH  ,, . 

Non-Adaptive semantic security for range queries on 

encrypted data. Let RQED = (GenKey, Encrypt,  Trapdoor, 

Search, Decrypt) be a scheme for range queries on 

encrypted data over R , k  be a security parameter, A be an 

adversary, and S be a simulator. Consider the following 

probabilistic experiments:

 

 

 kARQED,Real  

)1( kK GenKey  

)(1 ) ,( k

A AHst   

(R, W)H  as  parse  

(K, R)(I, E) Encrypt  

)1(for qi   

)( ii K,wTrapdoort   

), ..., t, t (tT q21let   

Ast (I, E, T)V  and output   

)(Sim REQD, kA  

)(1 ) ,( k

A AHst   

))( ( HSV   

AstV  and output  

 

A scheme for range queries on encrypted data is 

semantically secure if for all polynomial-size adversary A , 

there exists a polynomial-size simulator S  such that for all 

polynomial-size distinguishers D : 

 

)negl(1|)](Sim )( : 1  )Pr[D(

-)](Real ) ,( : 1  ),Pr[D(|

,

RQED,
k

ARQEDAA

AAA

kV,stV,st

kstV stV





 

IV.  OUR CONSTRUCTION OF RANGE QUERIES 

ON ENCRYPTED DATA 

A.  Basic Idea 

 Many of current solutions of range queries on encrypted 

data append some extra data with encrypted tuples which is 

used to do range queries directly on ciphertexts. The 

appended data with encrypted tuples usually preserve some 

property of plaintexts which may lead to information leakage, 

such as the ordering of encrypted tuples revealed in the 
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Order Preserving Symmetric Encryption (OPSE) scheme. So 

we decide to use a secure  index  which  may  bring  extra  

storage  but  make encrypted tuples indistinguishable with 

each other. This avoids substantial privacy loss. 

We suppose that the client side has a table R consisting 

of n tuples need to be outsourced to cloud. The client will 

do range queries on one of the attribute Q . The query range 

denoted by  , will be sent to cloud after taking the 

trapdoor operation. Figure 1 is an simple example with 3 

tuples, we will then build a secure index on it, and do range 

queries on the attribute ’group’. 

 
 

 
 

Figure 1.  An example table needed to be encrypted 

Encrypt Tuples. We encrypt the tuples simply useing 

some semantically secure encryption algorithm like AES. 

For each tuple in R  we encrypt it to etuple by this block 

cipher. Then we save all etuples in a the array E . Here we 

do not hide the real position of tuples in R  so the etuples 

remain the same position in E  of corresponding tuples in 

R . 

Build Secure Index. The secure index I stored on cloud 

is actually a binary matrix. Suppose  Q  denotes distinct 

value appeared in the attribute space of Q . An element of 

I is a binary number with one bit. Each element of I  

represents the query-attribute value relationship between a 

tuple ir and a element of  Q . For example, if the 

attribute value of ir is bigger than some attribute value in the 

attribute space, then one of the element in I is set to 0 or 1 

to denote this relation. The element value is 0 or 1, which is 

chosen randomly to hide the real relation. 

Let  Q be the element number of  Q . Then I  

consists of n  rows and   42 Q  columns. The row of 

I  represents a tuple’s attribute relation to every element 

in  Q and some padding bits. The column of I  

represents the relation between a element in  Q  with all 

tuples or only a padding bit array. We always use the 0th 

column to denote ‘negative infinity’ for all the values not in 

 Q  and less than the minimum value in  Q . And We 

always use the   thQ 1 column to denote the ‘positive 

infinity’ for all the values not in  Q  and bigger than the 

maximum value in  Q  too. 

We build the index I row by row with the following 

steps. For each tuple ir we build a row in I to save the 

relation between query-attribute value of ir  and all possible 

values of Q  in a hidden manner, and each row contains 

some padding bits to hide the query-attribute value of ir . 

First we randomly generate a hidden bit v . Let q  be each 

possible element of  Q . For each possible value of 

 Q . If the query-attribute value of ir   less or equal to q . 

We use v to denote it, which means we set the corresponding 

element of I to v . Otherwise we use   2mod1v  to 

denote it. Figure 2 show the result after taking above steps 

on table in Figure 1. The attribute space of attribute ‘group’ 

consisting of 4 distinct values {1,2,3,4}. 

 

 
Figure 2.  Secure index for tuple with group = 1(v = 0) 

After setting relation value for all attribute values we pad 

each row with extra 0 or 1 so that the number of 0 and the 

number of 1 in each row are both equivalent to   2Q . 

The padding result is shown in Figure 3. We complete these 

steps for the whole table. Then we use a random-

permutation function  to re-array the columns of I . 

Figure 4 shows the result of permutation of columns. 

 

 

Figure 3.  Padding secure index for tuple group = 1 

 

Figure 4.  Secure index after permutation 

Trapdoor. After building the secure index I , the client 

side need to save the random-permutation function   

which is used to build secure index  , the minimum and 

the maximum element of  Q . 

With the query range  , as input, we generate a 

trapdoor   tt , in the following steps. If is smaller or 

equal to the maximum element of  Q  and is more than or 

equal to the minimum element of  Q . The 

  thQa 1min  column is the column that represents 
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the query-attribute value  before doing permutation 

operation. So   1min  Qt  . 

If is smaller to the minimum element of  Q . The 

th0  column is the column that represents the query-attribute 

value before doing permutation operation. So  0 t . 

      If is bigger to the maximum element of  Q . The 

  thQ 1 column is the column that represents the 

query-attribute value before doing permutation operation. 

So   1 Qt  . 

We generate t by the same way of t . 

After generating the trapdoor   tt , we send the 

trapdoor to cloud. The cloud uses the trapdoor and secure 

index I to get the expect result in following way. Take a 

XOR operation on the
tht column and the 

tht column.This 

will generate a bit array with length n . The value of
thi bit 

in this array is 1  indicates that the
thi tuple satisfies the 

query range  , . 

We may find that the row represent some tuple in I may 

have the same row number with the corresponding etuple in 

E . The reason that we do not do permutation operation on 

the row number to hide the real row number in the original 

table is that we suppose the query-attribute value randomly 

distribute, and this makes sense in much of practical 

situations. Adversary can easily recognize a ordered attribute 

based on the fact the queries always return continuous 

etuples in the etuples array, and thus leaks the order 

information of R  which may lead to substantial privacy loss. 

However this is a trivial problem which could be solved 

easily by adding a permutation operation on row number for 

ordered attribute. To make our basic construction concise we 

simply remove this step. 

B. Our Scheme For Range Query On Encrypted Data  

Some notations used are described as follows: 

•  Let Q be the query-attribute of R . We will build a 

 secure index I for it to do range queries. 

•  Let  Q be the set of distinct values appearing inQ . 

•  Let  Q denotes the number of elements in  Q . 

•  Let I be the secure index of our scheme which is a 

  42  Qn  binary matrix.  yxI , denotes the bit 

in
thx row and

thy column.  yI *, denotes the bit array of 

thy column. 

•  Let qri . denote the value of tuple ir in attributeQ . 

•  Let SKE be a symmetric encryption scheme which is 

pseudo-randomness against chosen-plaintext attacks 

(PCPA-Secure). 

•   Pseudo-random permutation   
k

1,0:  
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C. Security Analysis of our scheme 

 

Proof. We provide a polynomial-size simulator S whose 

output  kSim ARQED , can not be distinguished with 

 kARQED,Real for all polynomial-size adversary A , S  

gen-erates output from a trace of q-query history H as 

follows: 

 

1)  Run GenKey algorithm to generate  *

2

*

1

* ,KKK  . 

2)  Run Encrypt algorithm on R to generate
*I . 

3)  Let     qi,β,αKtt ii

*

ii
 1, **

Trapdoor  

4)  Set
*

ie to be a random bits string with length ie  

 qi 1  

5) Let the output   **** ,, TEIV   

       ******

2

*

1

* ,,...,,,,...,,
11 qq

tttteeeI n   

searching on
*I with trapdoor  ** ,

ii
tt  will return the 

expected etuple set. 

Assume  TEIV ,, is the output of  kARQED,Real  

on history H . We now claim that no polynomial-size 

distinguisher D can distinguish between 
*V and V . 

1)   ( E and 
*E ) Recall that each ie is SKE ciphertext. 

*

ie is a random bits string with same length of ie . The 

PCPA-security of SKE will guarantee that ie and
*

ie are 

indistinguishable. 

2)    ( I and 
*I ) Recall that the building process of I do 

not need any key unless the random permutation 

operation .   uses a newly generated key
*

1K to build
*I . 

So the pseudo-randomness of will ensure I and
*I are 

indistinguishability. 

  3)     (T and 
*T ) BothT and 

*T  are generated by 


 with 

different  keys,  so  the  pseudo-randomness  of  


 will ensure 

their indistinguishability. 

The indistinguish between 
*V  and V indicates that our 

construction is non-adaptive secure. 

 

D. Extension of our scheme 

 

Dynamic add or delete operation is a difficult task for 

most existing schemes. We find that our scheme can easily 

support add and delete operation on etuples with slight 

modification. We can split the building process of the secure 

index I into building a sub secure index for each tuple one 

by one. Thus if the attribute space is pre-determined then the 

add operation for secure index I is the same as building a 

sub index for one tuple which will not affect the structure of 

I . When taking the add operation to E , it only needs to 

add the corresponding etuple at the tail of E . Which is also 

the same with the setup process of E . The delete operation 

can be implemented by deleting the corresponding row 

in I and corresponding etuple in E . The delete operation 

may be a little complicated than the add operation because 

we need to handle the blank rows after taking the delete 

operation. 

Although we claimed our security model is very strong, 

no scheme with proof security can achieve this security 

except our’s. A rigorously analysis for this conclusion is still 

needed, which is the further research for us. 

So far our scheme can only support one-dimension 

attribute. A trivial  way  to  support  multi-dimensions  

attributes  is  to expand the index size. The column number 

is not the distinct values  number  in  one  attribute  space,  

but  the  number  of distinct value in the cartesian product of 

different attributes’ spaces. The cost of storage may increase 

quickly with the dimension number. 

As we can see, the column number of secure index is 

determined by the attribute range which means all possible 

value may appear in queries. So if the attribute range is large 

it makes the secure index large, too. Fortunately we use only 

one bit for each value of attribute range in one row. This can 

reduce the total storage sharply. There is a close link 

between the size of secure index and attribute type. To 

reduce the storage we hope the attribute range is very dense. 

An typical example of dense attribute range is the unique id 

of each tuple which is a series of sequences number. 

 

V. PERFORMANCE ANALYSIS 

 

The performance analysis in our construction can be 

divided into two parts, the cost on the etuples array and the 
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cost on secure index. Because we use some block cipher to 

encrypt tuples directly, which is a necessary cost for all the 

range queries schemes. So we focus our performance 

analysis mainly on the cost of secure index. 

The performance bottleneck of secure index in our 

scheme is the storage cost in cloud. The reason is that for 

each distinct value in the query-attribute space we need to 

build a bits-column in the secure index. So the size of the 

secure index is relevant tightly to the query-attribute value 

space. Consider a table consisting of 104  tuples with a 

query-attribute named salary per week which ranges from 

0$ to 10K$. The size of the secure index output by our 

construction is nearly 104 ×104 bits that is 10M B. The size 

of the secure index increases linearly with the number of 

tuples or the distinct value number of query-range space. 

The secure index of our construction can be arranged to 

a distributed environment to remedy the storage cost. We 

save a couple of columns instead of the whole secure index 

in one machine. When doing range queries, we only need to 

find the right machine containing the columns that represent 

the query ranges. The rest operations are the same as the 

original scheme. 

The computing cost mainly consists of three parts, a 

random permutation on the client side, a XOR operation of 

two bit array with length n and a linear search on a bit array 

with length n on cloud. The complexity of the search 

operation is O(n). However, we take this operation on a bit 

array. The basic operation not like a comparison between 

two large integers is only bit operation. So the total cost of 

computing will increase slowly. 

VI. CONCLUSION 

 

In this paper, we proposed a scheme for range queries on 

encrypted data and we also proposed a non-adaptive security 

model based on the SSE [3] security model for range queries 

on encrypted data, which has a strong security. We make 

security analysis and prove that our scheme can achieve 

non-adaptive  secure  for  range  queries  on  encrypted  data.  

Our scheme  reduces  the  client  cost  and  improves  the  

security without efficiency loss comparing to existing 

schemes. What’s more with slight modification our scheme 

can be applied to dynamic range queries on encrypted data 

and the secure index of our scheme is very suitable to save 

on a distributed environment. 

 

VII. FUTURE WORK 

 

Intuitively our scheme achieve the strongest security 

among present  schemes  for  range  queries  on  encrypted  

data,  but a rigorous analysis is still need to complete. 

Revising our scheme to support multi-range and dynamic 

add and delete etuple are also meaningful works. And we 

will try to extend our scheme to apply to a multi-users 

circumstances too. 
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