
An Improved Scheme for Range Queries on Encrypted Data

Ye Xiong∗ , Dawu Gu∗ , Haining Lu∗

∗Lab of Cryptography and Computer Security

Shanghai Jiao Tong University

 Shanghai, China

Email: {nengzhizhi, dwgu, hnlu}@sjtu.edu.cn

Abstract—With the prevalence of cloud computing, more and

more data are outsourced to the untrusted cloud servers,

which raises a security issue that how can data owners ensure

the privacy of their data in cloud. A straightforward way is to

encrypt the data before uploading, but it will face new

challenge when data owners need to search on their encrypted

data.

 Searchable encryption will help to solve this problem by

enabling the cloud servers to perform searching for the data

owners while not learning any information about the data and

the searching criteria.

 Range query on large encrypted data set is one of the most

difficult parts of searchable encryption. In this paper, we

proposed a novel scheme which improves the security and

avoids any false positive. And the evaluation shows that our

scheme reduces client storage and remain efficiency compared

with the existing schemes.

Keywords-Searchable Encryption; Range Query; Cloud

Security

I. INTRODUCTION

The term of cloud computing refers to massive computing

and storage resources offering on-demand services over a net-work.

However the cloud users will face the privacy problem after

their data is sent to the cloud. Usually outsourced data is

encrypted to preserve its privacy and integrity. This brings a

challenge of how to do search operation on outsourced data in

the encrypted form. A trivial solution is to send all the

encrypted data in cloud back to the client, then decrypt it to do

the search operation on plaintext. This solution oblivious

contains drawback on efficiency.

The topic of searchable encryption dedicates to solve the

problem of searching on encrypted cloud data both in effi-

cient and secure way. Typical searchable encryption [10] [3]

research about the searching on a document set to get the doc-

uments that contain specified keywords. Curtmola introduced a

representative scheme of typical searchable encryption [3]. He

proposed two revised security models, non-adaptive secure and

adaptive secure, and also provided two constructions matching

these two models. We will modify his security models to

propose a security model for range queries on encrypted data.

Range queries on outsourcing databases is another well

studied topic of searchable encryption [1] [4]. Be different with

the typical searchable encryption, range queries on encrypted

data dedicates to solve the searching on some attributes by a

query range, which is usually represented by a attribute

like[1,100]. The cloud returns the results and computing.

which satisfy the query range. For example, an internet service

provider may outsource web logs to cloud. He may want to

query this data to analyze traffic patterns by date ranges and IP

address ranges specified as 128.54.* etc.

The attribute based encryption (ABE) is a public-key

encryption [5] [6] which treats the query range as an attribute in

ABE, it offers provable security for asymmetric encryption, but

this type of solution suffers from high computation overhead.

Order-preserving encryption-based techniques [8] [9] which

ensure that order amongst plaintext data is preserved in the

ciphertext domain. These solutions achieve efficiency but the

leakage of relative order among ciphertext domain may be

exploited by the adversary to compromise the security.

Prefix-preserving encryption [2] encrypts the query-attribute

of each record such that a prefix shared in two plaintexts is

preserved in the corresponding ciphertexts, which means the

ciphertexts share a same length prefix with plaintexts. The

prefix-preserving ciphertexts lead the scheme to leak

information about etuple order rapidly.

Bucketization-based techniques [1] [4] use distributional

properties of the dataset to partition and index them for

efficient querying. This solution can keep a minimum

disclosure and achieve efficiency but it suffers from various

limitations such that bucket indices must be stored and searched

locally at the client site. What
′
s more, this scheme will induce

false positives.

[11] proposed a scheme using symmetric scalar-product

preserving encryption to build a hierarchical encrypted index,

this scheme can search efficiently but still contains false

positives.

Our contribution. In this paper, we make the following

contributions. We propose a scheme based on a secure index

for range queries on encrypted data which improves the

security and avoids any false positive. We modify Curtmola′s

[3] non-adaptive secure security model to suggest an non-

adaptive secure security model for range queries on encrypted

data. This model has a strong security that many existing

schemes for range queries on encrypted data can not satisfy it.

We will prove that our scheme can satisfy the non-adaptive

secure security model of range queries on encrypted data.

Our scheme sacrifices some storage on cloud to improve

security, but our scheme deduces the client cost both in

International Workshop on Cloud Computing and Information Security (CCIS 2013)

© 2013. The authors - Published by Atlantis Press 497

storage.And our scheme remains efficiency compared with the

existing schemes. What’s more, our scheme will not induce

any false positive.

Table 1 shows the comparison of our construction with

some competing schemes. As the table shows, our construction

gets advantage especially at the client computation and client

storage. We believe that our scheme can achieve the highest

security among the existing schemes. A strict analysis will be

completed in our future work.

Although supporting dynamic operations such as add or

delete operation for the range queries encryption is difficult for

many schemes. We find that with slight modification our

scheme can support dynamic operations well.

II. RELATED WORK

Attribute Based Encryption. The attribute based

encryption (ABE) [5] [6] is a public-key encryption that a user
′
s

keys and ciphertexts are associated with sets of descriptive

attributes and a particular key can decrypt a particular

ciphertext only if the cardinality of the intersection of their

labeled attributes exceeds a certain threshold. With slight

modification, ABE can be applied to the scenario of range

query encryption. These schemes provide provable security for

outsourced data and queries, but a limitation of ABE is that

attributes are revealed in ciphertext, which is not acceptable in

the cloud scenario. And the computation on public-key

encryption may led to suffer from high computation overhead

is another limitation.

Order-Preserving Symmetric Encryption. In [8]

[9], Boldyreva et al. proposed the Order-Preserving

Symmetric Encryption (OPSE). In OPSE the ciphertext

preserves the order property of plaintext. For

example, mE denotes the encryption of plaintext m ,

if 21 mm then 1mE > 2mE as a result in OPSE. The

authors showed that the highest security of OPSE is

indistinguishability under ordered chosen plaintext attacks

(IND-OCAP). However the authors proved that no OPSE

scheme could reach the IND-OCPA security. Although they

proposed another security definition, OPSE still reveals the

ordering of encrypted tuples, which can lead to substantial

privacy loss.

Bucketization-Based Techniques. In [1] [4], Hore et

al. proposed a scheme based on a bucketization techniques

which partition the data into a set of buckets. Each bucket

is assigned a random index tag making every element

within a bucket indistinguishable from another. The indices

of buckets are kept in the client side. To process a range

query, then client have to translate the query to tags of

buckets by indices. The cloud return the corresponding buckets

using such tags. An oblivious limitation of bucketization-based

techniques is that it will induce false positives which means

that a query response includes all the tuples in all matching

buckets. Another limitation is that client has to retain the

indices at his site. And the index search complexity in client

side will increase linearly with the number of buckets.

III. DEFINITION OF RANGE QUERIES ON

ENCRYPTED DATA

We use curtmola's [3] definition but make some

modifications that extend the search criteria from single

keyword search to range query search.

A. Basic Notations

n Number of tuples

ir
 Plaintext of tuple,1≤i≤n

R All plaintext tuples set, ni rrr ,..., 2

ie Encrypted tuple(etuple), 1≤i≤n

E All etuples, neee ,...,, 21

I Secure index

w A query range denoted by two values

W A query range set, qwww ,...,, 21

t A trapdoor of query range w

 wR A tuple set satisfied the query range w

 tE A etuple set satisfied the trapdoor t

B. Definition of Index Based Range Queries On Encrypted

Data

We define a scheme based on a secure index for range

queries on encrypted data which is composed of five

polynomial-time algorithms (GenKey, Encrypt, Trapdoor,

Search, Decrypt) such that.

K ← Gen k1 :is a probabilistic key generation

algorithm that is run by the user to setup the scheme. It takes

as input a security parameter k , and outputs a secret key K .

 EI , ←Encrypt RK , : a probabilistic algorithm run

by the client to encrypt tuple set R . It takes the secret key

K and the tuple set to be encrypted R as inputs. And the

results of this algorithm are composed of two parts: a secure

index I and an encrypted tuple set E = ni eee ,...,, 2 , ie is

the encrypted form(etuple) of ir ni 1 . The secure

index and the ciphertext of tuple set will be sent to the

server after generation.

t ←Trapdoor wK , : a deterministic algorithm run by

the client to build a trapdoor on the query range w . The

trapdoor will be sent to the server after generation.

 tE ←Search tI , : a deterministic algorithm run by

the server to make a search. It takes a secure index I and a

trapdoor t as inputs, and the search results tE , which

means the tuple set that match the query range w .

498

ir ←Decrypt ieK , : a deterministic algorithm run by

the client to decrypt the ciphertext of a single tuple.

An scheme based on secure index for range queries on

encrypted data is correct if for all Nk , for all K output

by k1Gen , for all ieI , output by iI,eEncrypt , for

all w ,

 iK retEwI iDecryptTrpdr,Search

for ni 1

C. Security Definition of Range Query On Encrypted Data

 Curtmola [3] introduced two security models, non-

adaptive secure and adaptive secure of SSE(Searchable

Symmetric Encryption) scheme. These models provide

strong security guarantee for SSE. We will propose a similar

security model for range queries on encrypted data based on

the non-adaptive security model of SSE.

Properties Bucketization Order-Preserving Enc Prefix-Preserving Enc Our scheme
Client Computation O(n/B) O(δ) O(Kslog

2
|D|) O(Kp)

Client Storage(Bits) O(n/B) O(δlog|D|+log(N)) O(log(N)) O(log(N))
Server Computation O(n/B) O(|C|+log(n)) O(|C|+log(n)log|D|) O(|D|)
Query Send Size(Bits) O(C/B) O(log|D|) O(log

2
|D|) O(log|D|)

False Positive yes no no no

Table 1. Costs comparison to existing schemes. n is the number of tuples, B is the bucket size of bucketization scheme, C is the result set size. Ks

and Kp are costs of symmetric encryption and permutation operations, respectively. δ for OP E is small with unknown relation to n. N is a 512-4096
bit number.

History. A q-query history over a tuple set R with n

tuples is defined as WRH , , while w is a sequence of

q query ranges qwwwW ,...,, 21 .

Access Pattern. The access pattern induced by a q-

query history),(WRH , is the tuple

 qwRwRwRH ,...,, 21

Search Pattern. The search pattern induced by a q-query

history WRH , , is a symmetric matrix σ(H) such that

for qji ,1 , the element in the
thi row and

thj column

is 2 if the pair value of query iw are same with jw , the

element in the
thi row and

thj column is 1 if one of the pair

value of query iw is same with one of the pair value of query

jw , and 0 otherwise.

Trace. The trace induced by a q-query history

 WRH , , is a sequence HHnH ,, .

Non-Adaptive semantic security for range queries on

encrypted data. Let RQED = (GenKey, Encrypt, Trapdoor,

Search, Decrypt) be a scheme for range queries on

encrypted data over R , k be a security parameter, A be an

adversary, and S be a simulator. Consider the following

probabilistic experiments:

 kARQED,Real

)1(kK GenKey

)(1) ,(k

A AHst

(R, W)H as parse

(K, R)(I, E) Encrypt

)1(for qi

)(ii K,wTrapdoort

), ..., t, t (tT q21let

Ast (I, E, T)V and output

)(Sim REQD, kA

)(1) ,(k

A AHst

))((HSV

AstV and output

A scheme for range queries on encrypted data is

semantically secure if for all polynomial-size adversary A ,

there exists a polynomial-size simulator S such that for all

polynomial-size distinguishers D :

)negl(1|)](Sim)(: 1)Pr[D(

-)](Real) ,(: 1),Pr[D(|

,

RQED,
k

ARQEDAA

AAA

kV,stV,st

kstV stV

IV. OUR CONSTRUCTION OF RANGE QUERIES

ON ENCRYPTED DATA

A. Basic Idea

 Many of current solutions of range queries on encrypted

data append some extra data with encrypted tuples which is

used to do range queries directly on ciphertexts. The

appended data with encrypted tuples usually preserve some

property of plaintexts which may lead to information leakage,

such as the ordering of encrypted tuples revealed in the

499

Order Preserving Symmetric Encryption (OPSE) scheme. So

we decide to use a secure index which may bring extra

storage but make encrypted tuples indistinguishable with

each other. This avoids substantial privacy loss.

We suppose that the client side has a table R consisting

of n tuples need to be outsourced to cloud. The client will

do range queries on one of the attribute Q . The query range

denoted by , will be sent to cloud after taking the

trapdoor operation. Figure 1 is an simple example with 3

tuples, we will then build a secure index on it, and do range

queries on the attribute ’group’.

Figure 1. An example table needed to be encrypted

Encrypt Tuples. We encrypt the tuples simply useing

some semantically secure encryption algorithm like AES.

For each tuple in R we encrypt it to etuple by this block

cipher. Then we save all etuples in a the array E . Here we

do not hide the real position of tuples in R so the etuples

remain the same position in E of corresponding tuples in

R .

Build Secure Index. The secure index I stored on cloud

is actually a binary matrix. Suppose Q denotes distinct

value appeared in the attribute space of Q . An element of

I is a binary number with one bit. Each element of I

represents the query-attribute value relationship between a

tuple ir and a element of Q . For example, if the

attribute value of ir is bigger than some attribute value in the

attribute space, then one of the element in I is set to 0 or 1

to denote this relation. The element value is 0 or 1, which is

chosen randomly to hide the real relation.

Let Q be the element number of Q . Then I

consists of n rows and 42 Q columns. The row of

I represents a tuple’s attribute relation to every element

in Q and some padding bits. The column of I

represents the relation between a element in Q with all

tuples or only a padding bit array. We always use the 0th

column to denote ‘negative infinity’ for all the values not in

 Q and less than the minimum value in Q . And We

always use the thQ 1 column to denote the ‘positive

infinity’ for all the values not in Q and bigger than the

maximum value in Q too.

We build the index I row by row with the following

steps. For each tuple ir we build a row in I to save the

relation between query-attribute value of ir and all possible

values of Q in a hidden manner, and each row contains

some padding bits to hide the query-attribute value of ir .

First we randomly generate a hidden bit v . Let q be each

possible element of Q . For each possible value of

 Q . If the query-attribute value of ir less or equal to q .

We use v to denote it, which means we set the corresponding

element of I to v . Otherwise we use 2mod1v to

denote it. Figure 2 show the result after taking above steps

on table in Figure 1. The attribute space of attribute ‘group’

consisting of 4 distinct values {1,2,3,4}.

Figure 2. Secure index for tuple with group = 1(v = 0)

After setting relation value for all attribute values we pad

each row with extra 0 or 1 so that the number of 0 and the

number of 1 in each row are both equivalent to 2Q .

The padding result is shown in Figure 3. We complete these

steps for the whole table. Then we use a random-

permutation function to re-array the columns of I .

Figure 4 shows the result of permutation of columns.

Figure 3. Padding secure index for tuple group = 1

Figure 4. Secure index after permutation

Trapdoor. After building the secure index I , the client

side need to save the random-permutation function

which is used to build secure index , the minimum and

the maximum element of Q .

With the query range , as input, we generate a

trapdoor tt , in the following steps. If is smaller or

equal to the maximum element of Q and is more than or

equal to the minimum element of Q . The

 thQa 1min column is the column that represents

500

the query-attribute value before doing permutation

operation. So 1min Qt .

If is smaller to the minimum element of Q . The

th0 column is the column that represents the query-attribute

value before doing permutation operation. So 0 t .

 If is bigger to the maximum element of Q . The

 thQ 1 column is the column that represents the

query-attribute value before doing permutation operation.

So 1 Qt .

We generate t by the same way of t .

After generating the trapdoor tt , we send the

trapdoor to cloud. The cloud uses the trapdoor and secure

index I to get the expect result in following way. Take a

XOR operation on the
tht column and the

tht column.This

will generate a bit array with length n . The value of
thi bit

in this array is 1 indicates that the
thi tuple satisfies the

query range , .

We may find that the row represent some tuple in I may

have the same row number with the corresponding etuple in

E . The reason that we do not do permutation operation on

the row number to hide the real row number in the original

table is that we suppose the query-attribute value randomly

distribute, and this makes sense in much of practical

situations. Adversary can easily recognize a ordered attribute

based on the fact the queries always return continuous

etuples in the etuples array, and thus leaks the order

information of R which may lead to substantial privacy loss.

However this is a trivial problem which could be solved

easily by adding a permutation operation on row number for

ordered attribute. To make our basic construction concise we

simply remove this step.

B. Our Scheme For Range Query On Encrypted Data

Some notations used are described as follows:

• Let Q be the query-attribute of R . We will build a

 secure index I for it to do range queries.

• Let Q be the set of distinct values appearing inQ .

• Let Q denotes the number of elements in Q .

• Let I be the secure index of our scheme which is a

 42 Qn binary matrix. yxI , denotes the bit

in
thx row and

thy column. yI *, denotes the bit array of

thy column.

• Let qri . denote the value of tuple ir in attributeQ .

• Let SKE be a symmetric encryption scheme which is

pseudo-randomness against chosen-plaintext attacks

(PCPA-Secure).

• Pseudo-random permutation
k

1,0:

 s2log
1,0 s2log

1,0

 21

2

$

1

, return)3
1)2

1,0 sample)1

1

KK
K

K

GenKeyK

k

k

k

SKE.Gen

 E,I

Qδv
vIi

vQiI

viI

vjiI

vjiI

Qqr
Q

v

Ee

re
ni

K,REI

th
K

K

K

K

ji

i

iKi

 return)13
2 toequivalent both are2mod1and

 ofnumber that theso of row thepadding)12

denote2mod11,)11

- denote 0,)10

2mod1,)9
:else)8

,)7

:. if)6
:j1for)5

1,0 samplerandomly)4

 to add)3

let)2
:1for)1

:,

1

1

1

1

2

$

SKE.Enc

Encrypt

 :, K,α,tt Trapdoor

 :min if)1 Q

 0)2
1Kt

 :max if else)3 Q

 1)4
1

 Qt K

 :else)5

 1min)6
1

 Qt K

 :Qmin if)7

 0)8
1Kt

 :max if else)9 Q

 1)10
1

 Qt K

 :else)11

 1min)12
1

 Qt K

 tt , return)13

501

 :βα,tI,tC Search

 tItIB *,*,)1

 :ni1for)2

 :1][if)3 iB

 Ce to add)4 i

 C return)5

 :ii K,er Decrypt

 ii eKr ,)1 2SKE.Dec

 ir return)2

C. Security Analysis of our scheme

Proof. We provide a polynomial-size simulator S whose

output kSim ARQED , can not be distinguished with

 kARQED,Real for all polynomial-size adversary A , S

gen-erates output from a trace of q-query history H as

follows:

1) Run GenKey algorithm to generate *

2

*

1

* ,KKK .

2) Run Encrypt algorithm on R to generate
*I .

3) Let qi,β,αKtt ii

*

ii
 1, **

Trapdoor

4) Set
*

ie to be a random bits string with length ie

 qi 1

5) Let the output **** ,, TEIV

2

*

1

* ,,...,,,,...,,
11 qq

tttteeeI n

searching on
*I with trapdoor ** ,

ii
tt will return the

expected etuple set.

Assume TEIV ,, is the output of kARQED,Real

on history H . We now claim that no polynomial-size

distinguisher D can distinguish between
*V and V .

1) (E and
*E) Recall that each ie is SKE ciphertext.

*

ie is a random bits string with same length of ie . The

PCPA-security of SKE will guarantee that ie and
*

ie are

indistinguishable.

2) (I and
*I) Recall that the building process of I do

not need any key unless the random permutation

operation . uses a newly generated key
*

1K to build
*I .

So the pseudo-randomness of will ensure I and
*I are

indistinguishability.

 3) (T and
*T) BothT and

*T are generated by

 with

different keys, so the pseudo-randomness of

 will ensure

their indistinguishability.

The indistinguish between
*V and V indicates that our

construction is non-adaptive secure.

D. Extension of our scheme

Dynamic add or delete operation is a difficult task for

most existing schemes. We find that our scheme can easily

support add and delete operation on etuples with slight

modification. We can split the building process of the secure

index I into building a sub secure index for each tuple one

by one. Thus if the attribute space is pre-determined then the

add operation for secure index I is the same as building a

sub index for one tuple which will not affect the structure of

I . When taking the add operation to E , it only needs to

add the corresponding etuple at the tail of E . Which is also

the same with the setup process of E . The delete operation

can be implemented by deleting the corresponding row

in I and corresponding etuple in E . The delete operation

may be a little complicated than the add operation because

we need to handle the blank rows after taking the delete

operation.

Although we claimed our security model is very strong,

no scheme with proof security can achieve this security

except our’s. A rigorously analysis for this conclusion is still

needed, which is the further research for us.

So far our scheme can only support one-dimension

attribute. A trivial way to support multi-dimensions

attributes is to expand the index size. The column number

is not the distinct values number in one attribute space,

but the number of distinct value in the cartesian product of

different attributes’ spaces. The cost of storage may increase

quickly with the dimension number.

As we can see, the column number of secure index is

determined by the attribute range which means all possible

value may appear in queries. So if the attribute range is large

it makes the secure index large, too. Fortunately we use only

one bit for each value of attribute range in one row. This can

reduce the total storage sharply. There is a close link

between the size of secure index and attribute type. To

reduce the storage we hope the attribute range is very dense.

An typical example of dense attribute range is the unique id

of each tuple which is a series of sequences number.

V. PERFORMANCE ANALYSIS

The performance analysis in our construction can be

divided into two parts, the cost on the etuples array and the

502

cost on secure index. Because we use some block cipher to

encrypt tuples directly, which is a necessary cost for all the

range queries schemes. So we focus our performance

analysis mainly on the cost of secure index.

The performance bottleneck of secure index in our

scheme is the storage cost in cloud. The reason is that for

each distinct value in the query-attribute space we need to

build a bits-column in the secure index. So the size of the

secure index is relevant tightly to the query-attribute value

space. Consider a table consisting of 104 tuples with a

query-attribute named salary per week which ranges from

0$ to 10K$. The size of the secure index output by our

construction is nearly 104 ×104 bits that is 10M B. The size

of the secure index increases linearly with the number of

tuples or the distinct value number of query-range space.

The secure index of our construction can be arranged to

a distributed environment to remedy the storage cost. We

save a couple of columns instead of the whole secure index

in one machine. When doing range queries, we only need to

find the right machine containing the columns that represent

the query ranges. The rest operations are the same as the

original scheme.

The computing cost mainly consists of three parts, a

random permutation on the client side, a XOR operation of

two bit array with length n and a linear search on a bit array

with length n on cloud. The complexity of the search

operation is O(n). However, we take this operation on a bit

array. The basic operation not like a comparison between

two large integers is only bit operation. So the total cost of

computing will increase slowly.

VI. CONCLUSION

In this paper, we proposed a scheme for range queries on

encrypted data and we also proposed a non-adaptive security

model based on the SSE [3] security model for range queries

on encrypted data, which has a strong security. We make

security analysis and prove that our scheme can achieve

non-adaptive secure for range queries on encrypted data.

Our scheme reduces the client cost and improves the

security without efficiency loss comparing to existing

schemes. What’s more with slight modification our scheme

can be applied to dynamic range queries on encrypted data

and the secure index of our scheme is very suitable to save

on a distributed environment.

VII. FUTURE WORK

Intuitively our scheme achieve the strongest security

among present schemes for range queries on encrypted

data, but a rigorous analysis is still need to complete.

Revising our scheme to support multi-range and dynamic

add and delete etuple are also meaningful works. And we

will try to extend our scheme to apply to a multi-users

circumstances too.

ACKNOWLEDGMENT

This work was supported by Doctoral Fund of Ministry of

Education of China (Grant No.: 20120073110094).

REFERENCES

[1] B. Hore, S. Mehrotra, and G. Tsudik. A Privacy-Preserving Index for

Range Queries. VLDB, 2004.

[2] J. Li and E. Omiecinski. Efficiency and security trade-off in supporting

range queries on encrypted databases. In Proc. DBSec, pages 69-
83,2005.

[3] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable
symmetric encryption: Improved definitions and efficient constructions.

ACM Conference on Computer and Communications Security

(CCS’06), 2006.

[4] B. Hore, S. Mehrotra, M. Canim, and M. Kantarcioglu. Secure multi-

dimensional range queries over outsourced data. The VLDB

Journal,2012.

[5] D. Boneh and B. Waters, Conjunctive, subset, and range queries on

encrypted data. IACR Cryptology ePrint Archive, vol. 2006, p.287,2006.

[6] E. Shen, E. Shi, and B. Waters, Predicate privacy in encryption

systems. In Theory of Cryptography Conference (TCC ’09), pp.457-

473,2009.

[7] E. Shi, J. Bethencourt, T. Chan, D. Song, and A. Perrig. Multi-

dimensional range query over encrypted data. In IEEE Symposium on
Security and Privacy, Washington, DC, USA, 2007. IEEE Computer

Society.

[8] A. Boldyreva, N. Chenette, Y. Lee, and A. ONeill, Order-preserving
symmetric encryption. In EUROCRYPT, pp.224-241, 2009.

[9] A. Boldyreva, N. Chenette, and A. ONeill, Order-preserving encryp-
tion revisited: Improved security analysis and alternative solutions. In

CRYPTO, 2011, pp.578-595.

[10] H Lu, D Gu, C Jin,T Yin Reducing extra storage in searchable
symmetric encryption scheme Cloud Computing Technology and

Science (CloudCom), 2012 IEEE 4th International Conference on. IEEE,

2012: 255-262.

[11] P Wang, R Chinya V. Secure and Efficient Range Queries on

Outsourced Databases Using Rp-trees International Conference on Data

503

