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Abstract—Evasive software keyloggers hide their malicious 

behaviors to defeat run-time detection. In this paper, based on 

the analysis of the evasion mechanisms used by common 

software keyloggers, we established a framework for their 

detection. Mimicking user keystrokes, the framework we built 

could induce keyloggers showed more obvious malicious 

activities. These ‘amplified’  activities are then correlated by 

the dendritic cell algorithm (an immune-inspired algorithm) to 

final determine the existence of a keylogger in a host. 

Preliminary experimental results showed that the framework 

could improve the performance of keylogger detection and 

hard to evade. 

Keywords-keylogger; keystroke simulation; dendritic cell 

algorithm (DCA); correlation 

I.  INTRODUCTION 

With the development of e-commerce and online games, 
software keyloggers which steal confidential information 

by monitoring a user‟s keyboard actions are becoming a new 
trend for malware [1]. They intercept and log all keystrokes, 
and transmit this information to profit-driven attackers. 
Unlike other types of malicious programs, keyloggers are 
designed to capture what is done on a PC without attracting 
the attention of users and present no threat to the system [2]. 
This makes them largely undetectable by most anti-virus and 
anti-keylogger applications [3], [4]. 

To overcome the problems above, security experts are 
trying to use behavior-based detection techniques that 
analyze API calls of a process to classify it as keylogger or 
not [4], [5]. However, these methods all have some 
shortcomings to some extent. Detection [4] relies on single 
behavior (setting Windows hooks) has a high rate of false 
positives (FP) [5]. Though correlation of multiple behaviors 
(keystroke tracking, file access and network communication) 
reduces the FP rate, it seems that the detection is prone to be 
evaded when specified time window and simple correlation 
algorithm are used [5]. 

For the purpose of improving the detection performance, 
Fu [6] uses an immune-inspired algorithm - dendritic cell 
algorithm (DCA) to correlate the behaviors mentioned by [5]. 
As an algorithm, the DCA performs multi-sensor data fusion 
on a set of input signals, and these signals are correlated with 
potential „suspects‟, leading to information which will state 
not only if an anomaly is detected, but in addition the culprit 
responsible for it. By using variable time windows and time 
sequence of the different behaviors, the DCA improves the 

detection performance to a certain degree. But every coin has 
two sides. The correlating feature of the DCA can be 
exploited by crafty attackers to evade detection by reducing 
the frequency of the malicious behaviors [7]. The 
experimental results of [6] support the above claim. 

Man-to-machine interfaces cannot be ignored when fight 
against keyloggers [2]. In this paper, we analyzed the 
evasion mechanisms used by common software keyloggers. 
We discovered that the keystroke (especially keystroke of the 
special key, such as „Enter‟ key) frequency is an important 
trigger for keyloggers to log and send captured information. 
As a result, we built an induction-correlation framework for 
keylogger detection. In this framework, we synthesized man-
to-machine interactions by implementing a keystrokes 
simulation program. The program can induce keyloggers to 
exhibit more malicious activities without disturbing normal 
applications. Then, the „amplified‟ behaviors are correlated 
by the DCA in order to identify the keylogger as early as 
possible. Experiments were conducted to test capabilities of 
our framework to improve the detection rate and reduce the 
possibility of successful evasion. 

II. RELATED WORK 

Since signature-based detection has nothing to do against 
novel keyloggers [2], security experts are now focusing their 
attentions to behavior-based detection techniques that 
analyze API calls of a process to classify it as benign or 
malicious. As keyloggers always use Windows hooks, Aslam 
[4] disassembles all running processes searching for 
SetWindowsHookEx function to find keylogger processes. 
This method has a high rate of false positives as legitimate 
applications also use this function to set hooks [5]. 

Rather than relying on single behavior (setting hooks), 
Al-Hammadi [5] proposes a method to detect keylogging 
activities with correlations between different behaviors 
(keystroke tracking, file access and network communication). 
Although the technique has a relatively low false positive 
rate, the detection rate is not high because specified time 
windows and simple correlation algorithm (an algorithm 
using Spearman‟s Rank Correlation) are used [6]. 

Based on the work above, Fu [6] uses the immune-
inspired dendritic cell algorithm (DCA) to correlate multiple 
behaviors described in [5]. The DCA is based on an abstract 
model of the behaviors of dendritic cells which are natural 
intrusion detection agents of the human body. These cells 
collect antigens and signals (environmental conditions of the 
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antigens), and combine the evidence of damage (signals) 
with the collected suspect antigen to provide information 
about how „dangerous‟ a particular antigen is. The DCA 
performs multi-sensor data fusion on a set of input signals 
and antigens, leading to information which states not only if 
an anomaly is detected, but in addition the culprit responsible 
for it. More information about the DC and the DCA please 
refer to [8]. 

The input signals defined in [6] are derived from the 
frequency of invocations of keystroke tracking functions, the 
time difference between two consecutive WriteFile calls, the 
relation between different categories of function calls and the 
time difference between two outgoing consecutive 
communication functions. The process (identified by PID) 
which causes the calls is defined as antigens [6]. The DCA 
correlates antigens with input signals, resulting in a pairing 
between signal evidences and antigen suspects, and the 
identification of the keylogger process in the end. However, 
as the DCA distinguishes between normal and potentially 
malicious antigens on the basis of neighboring antigens, the 
crafty attackers can exploit this correlating feature to evade 
detection by reducing the „concentration‟ of antigens in DCs 
[7]. 

The experimental results of [6] confirmed the above 
conclusion. The keylogger they used in experiments hid its 
behaviors by logging and sending keys only when enough 
keystrokes were intercepted or special keys (such as „Enter‟ 
key) were pressed. In experiments that long sentences were 
entered, the frequency of the malicious activities generated 
by the keylogger decreased significantly compared to the one 
observed in short sentence scenarios. The same trends were 
also found in detection performances of the DCA because of 
the reducing of the „concentration‟ of the malicious antigens. 
In the real world, we believe users keystroke patterns are 
similar with the long sentence scenarios described in [5] and 
[6]. This challenges the DCA to detect keyloggers in the real 
environment. 

III. KEYLOGGER ANALYSIS 

In this paper, we analyzed the source code of some 
typical open source keyloggers running on Windows NT 
operating systems, such as Keymail V0.7, Spybot V1.2 and 
Morsa-Keylogger V1.8. Then we compiled and executed 
these source codes to find their run-time features. Based on 
the static and dynamic analysis, we discovered the 
relationships between different behaviors generated by these 
keyloggers, and revealed the evasion mechanisms often used 
by them. 

Through static analysis, we found that all keyloggers 
worked in a similar manner. They all firstly tracked 
keystrokes and then wrote them to a file or/and send them to 
a destination across the Internet (via Email, FTP and etc.). 
The most important difference between these keyloggers was 
the timing that triggered file access and communication 
activities. These activities were performed when: 

1) intercepted every keystroke; 

2) the keystrokes intercepted reached a certain amount; 

3) special keys (such as ‘Enter’ key) were pressed. 

 
Figure 1.  The induction-correlation framework for software keylogger 

detection by the DCA. 

After running the compiled source codes, we found the 
keyloggers (such as Keymail) using the 1) trigger condition 
generated more file access and communication behaviors. 
However, these behaviors were relatively rarely observed 
when the keyloggers (such as Spybot and Morsa-Keylogger) 
with the 2) and the 3) trigger conditions were executed. So 
we could make a conclusion that it is the 2) and the 3) trigger 
conditions that gave keyloggers capabilities to evade the 
correlation-based detection (such as the DCA). 

Fortunately, the evasion mechanism above is a double-
edged sword. Besides hiding keylogger behaviors, it greatly 
exposes the existence of the keylogger when high frequency 
of keystrokes (especially special keystrokes) is encountered. 
That is why we use the keystroke simulation to enhance the 
detection performance of the DCA. 

IV. INDUCTION –CORRELATION FRAMEWORK 

We assume that the host to be monitored is infected with 
a keylogger without a user‟s awareness. The installed 
keylogger logs and sends the captured information when a 
user types his/her privacy via keyboard. In this paper, we 
propose an enhanced approach to detect software keyloggers 
on a host. The approach consists of two steps: 1) the 
induction of the keyloggers, 2) the correlation of the 
behaviors exhibited by them. We emphasize on the first step, 
describing how it improves the performance of the second 
step. The framework of our approach is shown in Fig. 1. 

Because the frequency of keystrokes in real environment 
is not high, the behaviors of the keylogger are not evident 
enough [6]. Therefore, we design a keystroke agent 
application to frequently generate random keystrokes, hoping 
that these keystrokes will be seen by the keylogger, but will 
not affect normal applications. As a result, the behavior of 
the keylogger will be more obvious in the stimulation of a 
large number of random keystrokes in a short time. 
Meanwhile, the keystroke agent holds the simulated 
keystrokes within a hidden application it creates to avoid 
them passing to the other applications. Thus the normal 
applications will not be affected by the simulated keystrokes 
since they only focus on the keystrokes passed to them. 

We also focus on keystroke tracking, file access and 
network communication behaviors exhibited by applications. 
By correlating API calls generated by these behaviors, the 
DCA can classify the application running in a host as a 
keylogger or not. For example, file access shortly after the 
keystroke tracking strongly indicates that there exist 
keylogging activities. The more active the application is in 
that period, the more likely it is a keylogger. 
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Figure 2.  How keystrokes are handled by a Windows NT operating 

system and intercepted by a keylogger. 

A. The induction phase 

In the induction phase, we synthesize random keystrokes 
to induce keyloggers. In order to find a way to simulate 
keystrokes which will be seen by a keylogger, we must 
understand how an operating system generates and handles 
keyboard events. We also must be clear that how a keylogger 
intercepts keystrokes in this process. 

As in Fig. 2, a Windows NT operating system generates a 
keyboard interrupt when a key was pressed. Then the 
keyboard driver transforms the interrupt to a system-defined 
message and puts it into the „system level message queue‟. 
Tracking the focused application at the time when the 
keyboard interrupt was generated, the operating system 
passes the message to the „application level message queue‟ 
of that specific focused application. Now it‟s the 
responsibility of that application to handle this key 
accordingly. If the operating system does not find any 
specific focused application, it simply discards that key. In 
this process, keyloggers employ very low level operating 
system calls [9], such as GetKeyboardState or 
GetAsyncKeyState, to intercept keystroke messages or detect 
keyboard interrupts directly. So the keyloggers see 
everything whenever a key is pressed. 

In this paper, we design a keystroke agent according to 
the mechanisms described above. By invoking system kernel 
(keybd_event), the agent simulates keyboard event 
completely. Because a keylogger tracks keystrokes from all 
applications (including keystroke agent application) in order 
to log sensitive data entered in them, it could see the 
simulated keystrokes since they are the same with the real 
keystrokes. But the keylogger doesn‟t understand what it 
sees and it can‟t tell the keystrokes generated by real users 
via keyboard from the ones generated by phantom users via 
our keystroke agent. When we simulate keystrokes 
frequently, in order to log and send these plentiful keys, the 
keylogger has to perform more file access and 
communication behaviors. 

On the other hand, the simulated keystrokes must not 
affect normal applications. Before starting to simulation, the 
agent creates a hidden window and sets the current active 
window to it. Then the simulated keystrokes are generated 
and passed to the hidden window which simply discards the 
keys received. After the simulation, the active window is set 
back to the active window before simulation. The keystroke 
agent regularly performs the procedure above. Since the 
execution time of this process is very short, the active 
window switches are almost imperceptible to users. 

B. The correlation phase 

In this paper, we use the dendritic cell algorithm (DCA) 
to correlate API calls generated by all running applications to 
identify keylogger applications. In order to obtain the API 
calls, we implement a hook program to monitor three types 
of function calls: 

1) Keyboard Tracking APIs: GetKeyboardState, 

GetAsyncKeyState and GetKeyNameText. 

2) File Access APIs: CreateFile, OpenFile, ReadFile 

and WriteFile. 

3) Communication APIs: socket, send, recv, sendto and 

recvfrom. 
These API functions are often employed by keyloggers to 

implement their keylogging and other features, but also may 
form part of legitimate usage. Therefore, an intelligent 
correlation method such as the DCA is required to determine 
if the invocations of such functions are indeed anomalous. 
Signals and antigens are vital input to the DCA. To facilitate 
comparison, we use the same definitions of the signal and 
antigen described in [6]. 

V. EXPERIMENTS 

The aim of our experiments is to verify that the keystroke 
simulation we proposed can enhance the visibility of a 
keylogger‟s behaviors, and thus can improve the detection 
performance of the DCA. To achieve this goal, we chose the 
same keylogger instance (spybot) and benign instances 
(notepad and mirc [10]) used in the experiments in [6], and 
set up the same network environment for their running.  

The experiments were divided into two groups which 
showed the detection performance differences between the 
DCA with the keystroke agent (E2) and the DCA without 
(E1) the keystroke agent. The agent simulates keystrokes 
once every 5 seconds, synthesizing some random (numbers 
and letters) and special keys („Enter‟ key). Each experiment 
was repeated for 10 times and lasted 600 seconds. Without 
any operations in the first 60 seconds, we used notepad and 
mirc to input sentences for 180 seconds respectively with an 
interval of 60 seconds. We had no operations in the final 120 
seconds. 

In both groups of experiments, we monitored two 
scenarios of typing. We typed short sentences in one scenario 
(E1.1 and E2.1) and long sentences in the other (E1.2 and 
E2.2). The sentence ended with „Enter‟ key. By monitoring 
two typing scenarios, we were able to show the effects of 
different keystroke patterns on our detection scheme and the 
effects of keystroke simulation in different input mode. 

In [6], the contents of the sentences were random, and the 
lengths of the sentences were not mentioned. To get closer to 
real user keystroke patterns, we collected 200 commonly 
used English sentences: 100 long (19-48 characters) and 100 
short (9-23 characters) sentences, and typed them one by one 
in corresponding scenarios. Because of the changes in typing 
mode, we adjusted the signal threshold values used in [6]: 
Nph = 1301(times/s), Npl = 1105(times/s), Nd1l = 7000(ms), 
Nd1h = 20000(ms), Nd2h = 2(times/s), Ns1l = 5000(ms), Ns1h = 
10000(ms), Ns2l = 55(times/s). They were set based on the 
statistical results of the frequency of API calls. Take 
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keyboard tracking API calls for example, the average 
frequency generated by spybot was 1203(times/s), the 
standard deviation was 88(times/s). And the max frequency 
concerning notepad or mirc was 55(times/s). Therefore, we 
set Nph = 1203 + 88 = 1301(times/s), Npl = 1203 − 88 = 
1105(times/s), Ns2l = 55(times/s). The maliciousness of 
keyboard tracking API calls was depend on whether they 
were in a high frequency (greater than Nph) or a low 
frequency (less than Ns2l). The population of DCs was set to 
100, the DCA chose 10 DCs every time an antigen or a 
signal was arrived for their storage. The fuzzy migration 
threshold value of DCs was between 1500 and 2000. The 
weight matrix was the same with [6]. 

A. Results 

We first give a look at the frequency of API calls 
generated by spybot in E1 and E2. The x-axis represents time 
in seconds while the y-axis represents the normalized value 
of API call frequencies. The normalized API call frequency 
values represent the total value we get during 10 seconds 
divided by the maximum value of the whole period (600 
seconds). 

For spybot instance, the results from E1 and E2 show that 
there are significant differences between API call frequency 
without keystroke simulation and the one with keystroke 
simulation in both two typing scenarios, as depicted in Fig. 3. 

From Fig. 3(a) and Fig. 3(b), we can see that although the 
keyboard tracking API calls generated by spybot maintain a 
high frequency in both E1.2 and E2.2, the frequencies of file 
access and communication API calls in E2.2 are much higher 
than the ones in E1.2, especially when long sentences are 
typed for text editing (using notepad from 61 to 240 second) 
or online chatting (using mirc from 301 to 480 second). The 
same differences are also shown in E1.1 and E2.1 when short 
sentences are entered. Therefore, we can conclude that the 
keystroke agent does has the ability to amplify the malicious 
behavior exhibited by spybot. 

The intercepted API calls invoked by spybot, notepad 
and mirc are used to generate corresponding signals using 
the method described in section IV-B. The DCA then 
processes and analyzes these signals to determine which 

process has keylogger behaviors. 错误！未找到引用源。
gives the results from the DCA. The values in the last two 
columns are the mean values and standard deviation values 
(in parentheses) in 10 repeated experiments. 

A threshold (T) is applied to MAC to make the final 
classification decision. The process whose MAC is higher 
than T is termed malicious, and vice-versa. Because the 
dataset contains one malicious instance and two benign 
instances, we can define T = 1/(1+2) . So the process with 
MAC > 1/3 is considered to be a keylogger process. From 
the table, we observe that the DCA detects the keylogger 
process in all scenarios except in E1.2. This means that the 
keylogger is more difficult to be detected when user inputs 
long sentences. However, with the help of the keystroke 
agent, the DCA detects keylogger process with no false 
negatives no matter which input mode is used. It is also 
noteworthy that no false positives are generated in all 
scenarios. 

 

(a) API functions invoked by spybot in E1.2 

 

(b) API functions invoked by spybot in E2.2 

Figure 3.  API functions invoked by spybot in long sentences scenarios 

(E1.2 and E2.2). We use notepad program for text editing during 61-240 
seconds and mirc program for online chatting during 301-480 seconds. 

TABLE I.  RESULTS FROM THE DCA 

Scenario 
Process 

Name 

The Number 

of Antigens 
MAC 

E1.1 

spybot 

notepad 

mirc 

6767(23.0) 

1470(0) 

1804(3.8) 

0.540(0.0049) 

0.087(0.0022) 

0.087(0.0027) 

E1.2 

spybot 5164(35.5) 0.271(0.0111) 

notepad 1140(0) 0.024(0.0020) 

mirc 1795(5.9) 0.037(0.0030) 

E2.1 

spybot 8045(23.2) 0.599(0.0065) 

notepad 1520(0) 0.064(0.0030) 

mirc 1718(1.4) 0.109(0.0024) 

E2.2 

spybot 6819(43.4) 0.427(0.0060) 

notepad 1640(0) 0.056(0.0033) 

mirc 1804(5.4) 0.071(0.0029) 
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B. Discussions 

From the results of the experiments, we can find that 

although the MAC values in TABLE Ⅰ are relatively low 

compared to the results from the experiments in [6], the basic 
experimental conclusions do not change: 

 Keystroke simulation can enhance the visibility of 
keylogger behaviors, and thus can improve the 
detection performance of the DCA. 

 Keystroke patterns have an obvious impact on the 
detection performance of the DCA. And the effects 
of keystroke simulation vary in different input mode. 

Fig. 3 demonstrates that the keystroke agent we 
implemented can induce spybot to perform more file access 
and communication behaviors. And the simulation method 
improves the spybot detection performance of the DCA to 
some extent in the same environment, as depicted in TABLE 

Ⅰ. The MAC value increases by about 58% and 11% in 

average when we type long sentences (E1.2 and E2.2) and 
short sentences (E1.1 and E2.1) respectively. In 20 
experiments without simulation (E1.1 and E1.2), only 10 
experiments detects spybot, detection rate is 50%. In contrast, 
all 20 experiments report spybot detection when keystroke 
agent is used. 

The improvement of detection efficiency in long 
sentences scenarios is much higher than short sentences 
scenarios. That may because the spybot behaviors are already 
obvious enough since the „Enter‟ key is typed frequently 
when the user type short sentences. So there is not much 
room for improvement in short sentences scenarios. 

The keystroke agent passes synthesized random keys to a 
hidden window created by it. Some keyloggers not only can 
intercept these keys, but also can know the destination of 
them (We find spybot has this ability in experiments). As a 
result, keyloggers can defeat the keystroke agent by the way 
that not to handle the keys send to the hidden window 
created by the agent. The future work will find a possible 
way to solve it. 

VI. CONCLUSION 

The success of any keylogger is determined by its ability 
to evade detection. In this paper, we analyzed the evasion 
mechanisms used by common software keyloggers and 
proposed an induction-correlation framework for keylogger 

detection. In this framework, keystrokes simulation raises the 
frequency of the keystrokes, and thus induces keyloggers 
produce more malicious behaviors to deal with these 
synthesized keystrokes. Then the „amplified‟ behaviors are 
correlated by the DCA in order to find the keylogger process 
as early as possible to reduce the loss of privacies. 
Experimental results showed that the framework we built can 
improve the keylogger detection rate and reduce the 
possibility of successful evasion.. 
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