
Mimicking User Keystrokes to Detect Keyloggers with Dendritic Cell Algorithm

Jun Fu
a
, Huan Yang

a
, Yiwen Liang

b
, Chengyu Tan

b

a
 The 28th Research Institute of China Electronics Technology Group Corporation, Nanjing 210007, China

Email: {doctorfj, happyfairy106}@163.com
b
 Computer School, Wuhan University, Wuhan 430079, China

Email: ywliang@whu.edu.cn, nadinetan@163.com

Abstract—Evasive software keyloggers hide their malicious

behaviors to defeat run-time detection. In this paper, based on

the analysis of the evasion mechanisms used by common

software keyloggers, we established a framework for their

detection. Mimicking user keystrokes, the framework we built

could induce keyloggers showed more obvious malicious

activities. These ‘amplified’ activities are then correlated by

the dendritic cell algorithm (an immune-inspired algorithm) to

final determine the existence of a keylogger in a host.

Preliminary experimental results showed that the framework

could improve the performance of keylogger detection and

hard to evade.

Keywords-keylogger; keystroke simulation; dendritic cell

algorithm (DCA); correlation

I. INTRODUCTION

With the development of e-commerce and online games,
software keyloggers which steal confidential information

by monitoring a user‟s keyboard actions are becoming a new
trend for malware [1]. They intercept and log all keystrokes,
and transmit this information to profit-driven attackers.
Unlike other types of malicious programs, keyloggers are
designed to capture what is done on a PC without attracting
the attention of users and present no threat to the system [2].
This makes them largely undetectable by most anti-virus and
anti-keylogger applications [3], [4].

To overcome the problems above, security experts are
trying to use behavior-based detection techniques that
analyze API calls of a process to classify it as keylogger or
not [4], [5]. However, these methods all have some
shortcomings to some extent. Detection [4] relies on single
behavior (setting Windows hooks) has a high rate of false
positives (FP) [5]. Though correlation of multiple behaviors
(keystroke tracking, file access and network communication)
reduces the FP rate, it seems that the detection is prone to be
evaded when specified time window and simple correlation
algorithm are used [5].

For the purpose of improving the detection performance,
Fu [6] uses an immune-inspired algorithm - dendritic cell
algorithm (DCA) to correlate the behaviors mentioned by [5].
As an algorithm, the DCA performs multi-sensor data fusion
on a set of input signals, and these signals are correlated with
potential „suspects‟, leading to information which will state
not only if an anomaly is detected, but in addition the culprit
responsible for it. By using variable time windows and time
sequence of the different behaviors, the DCA improves the

detection performance to a certain degree. But every coin has
two sides. The correlating feature of the DCA can be
exploited by crafty attackers to evade detection by reducing
the frequency of the malicious behaviors [7]. The
experimental results of [6] support the above claim.

Man-to-machine interfaces cannot be ignored when fight
against keyloggers [2]. In this paper, we analyzed the
evasion mechanisms used by common software keyloggers.
We discovered that the keystroke (especially keystroke of the
special key, such as „Enter‟ key) frequency is an important
trigger for keyloggers to log and send captured information.
As a result, we built an induction-correlation framework for
keylogger detection. In this framework, we synthesized man-
to-machine interactions by implementing a keystrokes
simulation program. The program can induce keyloggers to
exhibit more malicious activities without disturbing normal
applications. Then, the „amplified‟ behaviors are correlated
by the DCA in order to identify the keylogger as early as
possible. Experiments were conducted to test capabilities of
our framework to improve the detection rate and reduce the
possibility of successful evasion.

II. RELATED WORK

Since signature-based detection has nothing to do against
novel keyloggers [2], security experts are now focusing their
attentions to behavior-based detection techniques that
analyze API calls of a process to classify it as benign or
malicious. As keyloggers always use Windows hooks, Aslam
[4] disassembles all running processes searching for
SetWindowsHookEx function to find keylogger processes.
This method has a high rate of false positives as legitimate
applications also use this function to set hooks [5].

Rather than relying on single behavior (setting hooks),
Al-Hammadi [5] proposes a method to detect keylogging
activities with correlations between different behaviors
(keystroke tracking, file access and network communication).
Although the technique has a relatively low false positive
rate, the detection rate is not high because specified time
windows and simple correlation algorithm (an algorithm
using Spearman‟s Rank Correlation) are used [6].

Based on the work above, Fu [6] uses the immune-
inspired dendritic cell algorithm (DCA) to correlate multiple
behaviors described in [5]. The DCA is based on an abstract
model of the behaviors of dendritic cells which are natural
intrusion detection agents of the human body. These cells
collect antigens and signals (environmental conditions of the

International Workshop on Cloud Computing and Information Security (CCIS 2013)

© 2013. The authors - Published by Atlantis Press 530

antigens), and combine the evidence of damage (signals)
with the collected suspect antigen to provide information
about how „dangerous‟ a particular antigen is. The DCA
performs multi-sensor data fusion on a set of input signals
and antigens, leading to information which states not only if
an anomaly is detected, but in addition the culprit responsible
for it. More information about the DC and the DCA please
refer to [8].

The input signals defined in [6] are derived from the
frequency of invocations of keystroke tracking functions, the
time difference between two consecutive WriteFile calls, the
relation between different categories of function calls and the
time difference between two outgoing consecutive
communication functions. The process (identified by PID)
which causes the calls is defined as antigens [6]. The DCA
correlates antigens with input signals, resulting in a pairing
between signal evidences and antigen suspects, and the
identification of the keylogger process in the end. However,
as the DCA distinguishes between normal and potentially
malicious antigens on the basis of neighboring antigens, the
crafty attackers can exploit this correlating feature to evade
detection by reducing the „concentration‟ of antigens in DCs
[7].

The experimental results of [6] confirmed the above
conclusion. The keylogger they used in experiments hid its
behaviors by logging and sending keys only when enough
keystrokes were intercepted or special keys (such as „Enter‟
key) were pressed. In experiments that long sentences were
entered, the frequency of the malicious activities generated
by the keylogger decreased significantly compared to the one
observed in short sentence scenarios. The same trends were
also found in detection performances of the DCA because of
the reducing of the „concentration‟ of the malicious antigens.
In the real world, we believe users keystroke patterns are
similar with the long sentence scenarios described in [5] and
[6]. This challenges the DCA to detect keyloggers in the real
environment.

III. KEYLOGGER ANALYSIS

In this paper, we analyzed the source code of some
typical open source keyloggers running on Windows NT
operating systems, such as Keymail V0.7, Spybot V1.2 and
Morsa-Keylogger V1.8. Then we compiled and executed
these source codes to find their run-time features. Based on
the static and dynamic analysis, we discovered the
relationships between different behaviors generated by these
keyloggers, and revealed the evasion mechanisms often used
by them.

Through static analysis, we found that all keyloggers
worked in a similar manner. They all firstly tracked
keystrokes and then wrote them to a file or/and send them to
a destination across the Internet (via Email, FTP and etc.).
The most important difference between these keyloggers was
the timing that triggered file access and communication
activities. These activities were performed when:

1) intercepted every keystroke;

2) the keystrokes intercepted reached a certain amount;

3) special keys (such as ‘Enter’ key) were pressed.

Figure 1. The induction-correlation framework for software keylogger

detection by the DCA.

After running the compiled source codes, we found the
keyloggers (such as Keymail) using the 1) trigger condition
generated more file access and communication behaviors.
However, these behaviors were relatively rarely observed
when the keyloggers (such as Spybot and Morsa-Keylogger)
with the 2) and the 3) trigger conditions were executed. So
we could make a conclusion that it is the 2) and the 3) trigger
conditions that gave keyloggers capabilities to evade the
correlation-based detection (such as the DCA).

Fortunately, the evasion mechanism above is a double-
edged sword. Besides hiding keylogger behaviors, it greatly
exposes the existence of the keylogger when high frequency
of keystrokes (especially special keystrokes) is encountered.
That is why we use the keystroke simulation to enhance the
detection performance of the DCA.

IV. INDUCTION –CORRELATION FRAMEWORK

We assume that the host to be monitored is infected with
a keylogger without a user‟s awareness. The installed
keylogger logs and sends the captured information when a
user types his/her privacy via keyboard. In this paper, we
propose an enhanced approach to detect software keyloggers
on a host. The approach consists of two steps: 1) the
induction of the keyloggers, 2) the correlation of the
behaviors exhibited by them. We emphasize on the first step,
describing how it improves the performance of the second
step. The framework of our approach is shown in Fig. 1.

Because the frequency of keystrokes in real environment
is not high, the behaviors of the keylogger are not evident
enough [6]. Therefore, we design a keystroke agent
application to frequently generate random keystrokes, hoping
that these keystrokes will be seen by the keylogger, but will
not affect normal applications. As a result, the behavior of
the keylogger will be more obvious in the stimulation of a
large number of random keystrokes in a short time.
Meanwhile, the keystroke agent holds the simulated
keystrokes within a hidden application it creates to avoid
them passing to the other applications. Thus the normal
applications will not be affected by the simulated keystrokes
since they only focus on the keystrokes passed to them.

We also focus on keystroke tracking, file access and
network communication behaviors exhibited by applications.
By correlating API calls generated by these behaviors, the
DCA can classify the application running in a host as a
keylogger or not. For example, file access shortly after the
keystroke tracking strongly indicates that there exist
keylogging activities. The more active the application is in
that period, the more likely it is a keylogger.

531

Figure 2. How keystrokes are handled by a Windows NT operating

system and intercepted by a keylogger.

A. The induction phase

In the induction phase, we synthesize random keystrokes
to induce keyloggers. In order to find a way to simulate
keystrokes which will be seen by a keylogger, we must
understand how an operating system generates and handles
keyboard events. We also must be clear that how a keylogger
intercepts keystrokes in this process.

As in Fig. 2, a Windows NT operating system generates a
keyboard interrupt when a key was pressed. Then the
keyboard driver transforms the interrupt to a system-defined
message and puts it into the „system level message queue‟.
Tracking the focused application at the time when the
keyboard interrupt was generated, the operating system
passes the message to the „application level message queue‟
of that specific focused application. Now it‟s the
responsibility of that application to handle this key
accordingly. If the operating system does not find any
specific focused application, it simply discards that key. In
this process, keyloggers employ very low level operating
system calls [9], such as GetKeyboardState or
GetAsyncKeyState, to intercept keystroke messages or detect
keyboard interrupts directly. So the keyloggers see
everything whenever a key is pressed.

In this paper, we design a keystroke agent according to
the mechanisms described above. By invoking system kernel
(keybd_event), the agent simulates keyboard event
completely. Because a keylogger tracks keystrokes from all
applications (including keystroke agent application) in order
to log sensitive data entered in them, it could see the
simulated keystrokes since they are the same with the real
keystrokes. But the keylogger doesn‟t understand what it
sees and it can‟t tell the keystrokes generated by real users
via keyboard from the ones generated by phantom users via
our keystroke agent. When we simulate keystrokes
frequently, in order to log and send these plentiful keys, the
keylogger has to perform more file access and
communication behaviors.

On the other hand, the simulated keystrokes must not
affect normal applications. Before starting to simulation, the
agent creates a hidden window and sets the current active
window to it. Then the simulated keystrokes are generated
and passed to the hidden window which simply discards the
keys received. After the simulation, the active window is set
back to the active window before simulation. The keystroke
agent regularly performs the procedure above. Since the
execution time of this process is very short, the active
window switches are almost imperceptible to users.

B. The correlation phase

In this paper, we use the dendritic cell algorithm (DCA)
to correlate API calls generated by all running applications to
identify keylogger applications. In order to obtain the API
calls, we implement a hook program to monitor three types
of function calls:

1) Keyboard Tracking APIs: GetKeyboardState,

GetAsyncKeyState and GetKeyNameText.

2) File Access APIs: CreateFile, OpenFile, ReadFile

and WriteFile.

3) Communication APIs: socket, send, recv, sendto and

recvfrom.
These API functions are often employed by keyloggers to

implement their keylogging and other features, but also may
form part of legitimate usage. Therefore, an intelligent
correlation method such as the DCA is required to determine
if the invocations of such functions are indeed anomalous.
Signals and antigens are vital input to the DCA. To facilitate
comparison, we use the same definitions of the signal and
antigen described in [6].

V. EXPERIMENTS

The aim of our experiments is to verify that the keystroke
simulation we proposed can enhance the visibility of a
keylogger‟s behaviors, and thus can improve the detection
performance of the DCA. To achieve this goal, we chose the
same keylogger instance (spybot) and benign instances
(notepad and mirc [10]) used in the experiments in [6], and
set up the same network environment for their running.

The experiments were divided into two groups which
showed the detection performance differences between the
DCA with the keystroke agent (E2) and the DCA without
(E1) the keystroke agent. The agent simulates keystrokes
once every 5 seconds, synthesizing some random (numbers
and letters) and special keys („Enter‟ key). Each experiment
was repeated for 10 times and lasted 600 seconds. Without
any operations in the first 60 seconds, we used notepad and
mirc to input sentences for 180 seconds respectively with an
interval of 60 seconds. We had no operations in the final 120
seconds.

In both groups of experiments, we monitored two
scenarios of typing. We typed short sentences in one scenario
(E1.1 and E2.1) and long sentences in the other (E1.2 and
E2.2). The sentence ended with „Enter‟ key. By monitoring
two typing scenarios, we were able to show the effects of
different keystroke patterns on our detection scheme and the
effects of keystroke simulation in different input mode.

In [6], the contents of the sentences were random, and the
lengths of the sentences were not mentioned. To get closer to
real user keystroke patterns, we collected 200 commonly
used English sentences: 100 long (19-48 characters) and 100
short (9-23 characters) sentences, and typed them one by one
in corresponding scenarios. Because of the changes in typing
mode, we adjusted the signal threshold values used in [6]:
Nph = 1301(times/s), Npl = 1105(times/s), Nd1l = 7000(ms),
Nd1h = 20000(ms), Nd2h = 2(times/s), Ns1l = 5000(ms), Ns1h =
10000(ms), Ns2l = 55(times/s). They were set based on the
statistical results of the frequency of API calls. Take

532

keyboard tracking API calls for example, the average
frequency generated by spybot was 1203(times/s), the
standard deviation was 88(times/s). And the max frequency
concerning notepad or mirc was 55(times/s). Therefore, we
set Nph = 1203 + 88 = 1301(times/s), Npl = 1203 − 88 =
1105(times/s), Ns2l = 55(times/s). The maliciousness of
keyboard tracking API calls was depend on whether they
were in a high frequency (greater than Nph) or a low
frequency (less than Ns2l). The population of DCs was set to
100, the DCA chose 10 DCs every time an antigen or a
signal was arrived for their storage. The fuzzy migration
threshold value of DCs was between 1500 and 2000. The
weight matrix was the same with [6].

A. Results

We first give a look at the frequency of API calls
generated by spybot in E1 and E2. The x-axis represents time
in seconds while the y-axis represents the normalized value
of API call frequencies. The normalized API call frequency
values represent the total value we get during 10 seconds
divided by the maximum value of the whole period (600
seconds).

For spybot instance, the results from E1 and E2 show that
there are significant differences between API call frequency
without keystroke simulation and the one with keystroke
simulation in both two typing scenarios, as depicted in Fig. 3.

From Fig. 3(a) and Fig. 3(b), we can see that although the
keyboard tracking API calls generated by spybot maintain a
high frequency in both E1.2 and E2.2, the frequencies of file
access and communication API calls in E2.2 are much higher
than the ones in E1.2, especially when long sentences are
typed for text editing (using notepad from 61 to 240 second)
or online chatting (using mirc from 301 to 480 second). The
same differences are also shown in E1.1 and E2.1 when short
sentences are entered. Therefore, we can conclude that the
keystroke agent does has the ability to amplify the malicious
behavior exhibited by spybot.

The intercepted API calls invoked by spybot, notepad
and mirc are used to generate corresponding signals using
the method described in section IV-B. The DCA then
processes and analyzes these signals to determine which

process has keylogger behaviors. 错误！未找到引用源。
gives the results from the DCA. The values in the last two
columns are the mean values and standard deviation values
(in parentheses) in 10 repeated experiments.

A threshold (T) is applied to MAC to make the final
classification decision. The process whose MAC is higher
than T is termed malicious, and vice-versa. Because the
dataset contains one malicious instance and two benign
instances, we can define T = 1/(1+2) . So the process with
MAC > 1/3 is considered to be a keylogger process. From
the table, we observe that the DCA detects the keylogger
process in all scenarios except in E1.2. This means that the
keylogger is more difficult to be detected when user inputs
long sentences. However, with the help of the keystroke
agent, the DCA detects keylogger process with no false
negatives no matter which input mode is used. It is also
noteworthy that no false positives are generated in all
scenarios.

(a) API functions invoked by spybot in E1.2

(b) API functions invoked by spybot in E2.2

Figure 3. API functions invoked by spybot in long sentences scenarios

(E1.2 and E2.2). We use notepad program for text editing during 61-240
seconds and mirc program for online chatting during 301-480 seconds.

TABLE I. RESULTS FROM THE DCA

Scenario
Process

Name

The Number

of Antigens
MAC

E1.1

spybot

notepad

mirc

6767(23.0)

1470(0)

1804(3.8)

0.540(0.0049)

0.087(0.0022)

0.087(0.0027)

E1.2

spybot 5164(35.5) 0.271(0.0111)

notepad 1140(0) 0.024(0.0020)

mirc 1795(5.9) 0.037(0.0030)

E2.1

spybot 8045(23.2) 0.599(0.0065)

notepad 1520(0) 0.064(0.0030)

mirc 1718(1.4) 0.109(0.0024)

E2.2

spybot 6819(43.4) 0.427(0.0060)

notepad 1640(0) 0.056(0.0033)

mirc 1804(5.4) 0.071(0.0029)

533

B. Discussions

From the results of the experiments, we can find that

although the MAC values in TABLE Ⅰ are relatively low

compared to the results from the experiments in [6], the basic
experimental conclusions do not change:

 Keystroke simulation can enhance the visibility of
keylogger behaviors, and thus can improve the
detection performance of the DCA.

 Keystroke patterns have an obvious impact on the
detection performance of the DCA. And the effects
of keystroke simulation vary in different input mode.

Fig. 3 demonstrates that the keystroke agent we
implemented can induce spybot to perform more file access
and communication behaviors. And the simulation method
improves the spybot detection performance of the DCA to
some extent in the same environment, as depicted in TABLE

Ⅰ. The MAC value increases by about 58% and 11% in

average when we type long sentences (E1.2 and E2.2) and
short sentences (E1.1 and E2.1) respectively. In 20
experiments without simulation (E1.1 and E1.2), only 10
experiments detects spybot, detection rate is 50%. In contrast,
all 20 experiments report spybot detection when keystroke
agent is used.

The improvement of detection efficiency in long
sentences scenarios is much higher than short sentences
scenarios. That may because the spybot behaviors are already
obvious enough since the „Enter‟ key is typed frequently
when the user type short sentences. So there is not much
room for improvement in short sentences scenarios.

The keystroke agent passes synthesized random keys to a
hidden window created by it. Some keyloggers not only can
intercept these keys, but also can know the destination of
them (We find spybot has this ability in experiments). As a
result, keyloggers can defeat the keystroke agent by the way
that not to handle the keys send to the hidden window
created by the agent. The future work will find a possible
way to solve it.

VI. CONCLUSION

The success of any keylogger is determined by its ability
to evade detection. In this paper, we analyzed the evasion
mechanisms used by common software keyloggers and
proposed an induction-correlation framework for keylogger

detection. In this framework, keystrokes simulation raises the
frequency of the keystrokes, and thus induces keyloggers
produce more malicious behaviors to deal with these
synthesized keystrokes. Then the „amplified‟ behaviors are
correlated by the DCA in order to find the keylogger process
as early as possible to reduce the loss of privacies.
Experimental results showed that the framework we built can
improve the keylogger detection rate and reduce the
possibility of successful evasion..

ACKNOWLEDGMENT

This work was supported by the Defense Industrial
Technology Development Program of PR China (GrantNo.
A1420080183).

REFERENCES

[1] “A considerable increase has been seen in the number of malicious
programs with keylogging functionality,”
http://www.securelist.com/en/analysis/204791931/.

[2] S. Sagiroglu and G. Canbek, “Keyloggers,” Technology and Society
Magazine IEEE Fall 2009, vol. 28, pp. 10–17.

[3] M. Baig and W. Mahmood, “A Robust Technique of Anti Key-
Logging using Key-Logging Mechanism,” in Inaugural IEEE-IES
Digital EcoSystems and Technologies Conference (DEST‟07), 2007,
pp. 314–318.

[4] M. Aslam, R. Idrees, M. Baig, and M. Arshad, “Anti-Hook Shield
against the Software Key Loggers,” in Proceedings of the National
Conference on Emerging Technologies, 2004, pp. 189–191.

[5] Y. Al-Hammadi and U. Aickelin, “Detecting Bots Based on
Keylogging Activities,” in Proceedings of the 2008 Third
International Conference on Availability, Reliability and Security,
2008, pp. 896–902.

[6] J. Fu, Y. Liang, C. Tan, and X. Xiong, “Detecting Software
Keyloggers with Dendritic Cell Algorithm,” in Proceedings of the
2010 International Conference on Communications and Mobile
Computing (CMC), 2010, pp. 111–115.

[7] M. SalmanManzoor, S. Tabish, and M. Farooq, “A Sense
of ‟Danger‟for Windows Processes,” in Proceedings of the 8th
International Conference of Artificial Immune System (ICARIS
2009), 2009, pp. 220–233.

[8] J. Greensmith, U. Aickelin, and G. Tedesco, “Information fusion for
anomaly detection with the dendritic cell algorithm,” Information
Fusion, vol. 11, no. 1, pp. 21–34, 2010.

[9] C. Herley and D. Florencio, “How to login from an Internet café
without worrying about keyloggers,” in Symposium on Usable
Privacy and Security (SOUPS), vol. 6, 2006.

[10] “mIRC client application,” http://www.mirc.com.

534

