
Vulnerability Mining Techniques in Android Platform

Wei Zhang, Chengzhi Cao, Wenqing Liu, Yiran Jin

College of Computer

Nanjing University of Posts & Telecommunications

Nanjing 210003, China

zhangw@njupt.edu.cn

Abstract— Android is a mainstream smart phone platform.

Vulnerability mining work in android platform has become

one of the most careful subjects in information security field.

This paper combined the vulnerability mining research results

of traditional PC platform with the features of android

platform to analyze the advantages and disadvantages of

traditional vulnerability mining techniques applied in android

platform. This paper proposed a four-layer architecture model

of vulnerability mining techniques in android platform, and

then put forward its possible research directions. Finally, some

case studies are given to demonstrate the effectiveness and

practical significance of the mining layer, the core layer of the

four-layer architecture model.

Keywords-Android Platform; Vulnerability Mining;

Information Security

I. RESEARCH BACKGROUND

With the high-speed development of mobile network, our
society has entered into the mobile age. Smart phones,
tablets PCs and other mobile devices have been widely join
into people's daily life. Following that is the increasingly
rampant mobile virus [1], including virus, worm, trojan,
malicious mobile code and so on. Like the PC virus, the
mobile virus can destroy the normal function of the mobile
devices and affect the users. Due to the features of the
mobile platform, the mobile virus is more harmful to users
than PC virus. Massive private information stored in mobile
devices, such as text messages, phone call history, location
information, mobile traffic, mobile accounts and so on, may
be stole by attackers, which can cause extremely serious
consequences to users.

Most mobile virus are using mobile system
vulnerabilities to attack and spread, such as Cabir, the
world's first mobile virus, take use of the Bluetooth
vulnerability of Symbian; Mobile hackers virus, namely
Hack.mobile.smsdos, take use of the built-in MMS
vulnerability; Gingermaster, a virus for android 2.3, take use
of the privilege escalation vulnerability to attack android. So,
in order to reduce the harm caused by mobile system
vulnerabilities, passive detection and prevention against the
virus is not enough. This paper takes the perspective of
attackers to mine the existing vulnerabilities in mobile
system which can be exploited by the mobile virus.

At present, there are four main mobile system platforms:
Google android, Apple ios, Windows phone and Symbian os.
According to the ‘cloud security’ monitoring platform of
NetQin statistics [2], In 2013Q1, the number of virus that

have been worldwide detected and killed by NetQin is 25140,
about 353.05% growth compared to 2012, and the number of
infected smart phones is 10.4 million, about 99.23% growth
compared to 2012. Among them, 82% of the mobile virus
concentrated in android platform. This situation has made
android platform the main battlefield of virus and anti-virus.
Another report from iiMedia-Research [3] shows that the
number of smart phone users in China reached 420 million
by the end of 2013Q1, and android’s share is 71.0% with an
increasing trend. According to the above statistics, this paper
mainly introduces the research situation and research
directions on vulnerability mining techniques in android
platform.

II. ANDROID PLATFORM OVERVIEW

A. Status of the Android Platform Vulnerability

Vulnerability refers to the defects and shortages in the
design and implementation of computer system's hardware,
software or protocol. Broadly speaking, vulnerability refers
to all the factors that threats and breaks the system's
reliability, availability, confidentiality, integrity,
controllability and non-repudiation. The potential source of
vulnerabilities in android platform can be classified into
three types [4]: Embedded operating system, runtime
environment and application program. Embedded operating
system vulnerability refers to the vulnerability causes by
android system itself, a typical case is buffer overflow
vulnerability; Runtime environment includes java, flash, .net
and other support libraries. These support libraries are
vulnerable, they may be abused by users and cause runtime
environment vulnerability. There are many android
applications (apps) in the android market and some android
apps may have vulnerabilities. A typical example of
application program vulnerability is SSL vulnerability which
can cause man-in-the-middle (MITM) attacks.

Based on CVE, Security Focus and other well-known
security vulnerability database, this paper counted 252
android platform vulnerabilities published from March 2008
to May 2013 (the total number may be different due to
different security vulnerability databases). According to the
android vulnerability classification methods mentioned
above, we made a classification of these 252 vulnerabilities,
as shown in table 1. As you can see, runtime environment
and application program are the most vulnerable places,
accounted for 49% and 41% respectively. Attackers can get
user's sensitive information or execute DOS attack through

International Workshop on Cloud Computing and Information Security (CCIS 2013)

© 2013. The authors - Published by Atlantis Press 535

mailto:zhangw@njupt.edu.cn
app:ds:source
app:ds:application
app:ds:program
app:ds:program
app:ds:program

these vulnerabilities. The highest risk vulnerabilities are
mostly come from embedded operating system, accounted
for 10%. Its amount is little, but the harm is great. Attackers
can execute arbitrary code and do the privilege escalation
operation through these vulnerabilities. The emergence of
various android vulnerabilities has largely threatened user’s

information security. An effective way to assure user’s
information security is to mine and fix the threatening
vulnerabilities before they are being misused by attackers.
Therefore, our work is of great practical significance to study
the android platform vulnerability mining techniques.

TABLE I. ANDROID PLATFORM SECURITY VULNERABILITIES STATISTICS

Vulnerability

Point

Causes Influence NO. Sum

Embedded

Operating

System

Libpng library's vulnerability App crashes. 6 25
GIF library, showLog's function overflow vulnerability, etc. Arbitrary code execution or DOS. 11

Samsung,HTC equipment's vulnerability Privilege escalation, etc. 5

Pusher,ACRA library's integer overflow vulnerability Buffer overflow. 2

Android ADB vulnerability Allows user to overwrite any files. 1

Runtime

Environment

Android browser's integer overflow, information leaks, etc. Arbitrary code execution, etc. 7 124

Adobe Flash Player's vulnerability Arbitrary code execution or DOS. 117

Application

Program

Cnectd, KKtalk and other apps have unknown vulnerability Unknown influence. 57 103

iLunascape, Cookpad and other apps haven’t implemented WebView class correctly Sensitive information access. 6

Twicca and other apps haven’t limit the use of network access Sensitive information access. 7

Tencent QQPhoto, Kaixin001 and other apps haven’t protected data properly Sensitive information access. 25

Mozilla Firefox's vulnerability Arbitrary code execution or DOS. 4

Zoners, Groupon and other app's server name is as same as their domain name Man-in-the-middle attack. 4

B. Android Platform Features

Android is a Linux-based free and open source operating
system, mainly used in mobile devices, such as smart phones
and tablet PCs. It adopts software layer architecture. The
underlying Linux kernel provides only basic function and the
applications are developed independently by the third party
companies. Android platform has the following features:

1) Android platform is open source: Analysis on its

source code can theoretically mine all existing vulnerabilities.

Anyone can use the android source code, so in recent months,

a lot of secondary development versions and operator

customized versions of android system emerged. On this

occasion, the android virus must have a highly targeted

purpose and can’t be used to all android versions. For this

reason, it should be easy to capture the samples of android

virus.

2) Android fragmentation: Android system version

updates very frequent while the old versions eliminate very

slowly. By March 2013, the share of android 2.3 version is

44.2%, still take the overwhelming majority, while the share

of the latest android 4.1/4.2 is only 16.5%. This situation

leads to some low android versions which have

vulnerabilities still have a considerable number of users. It

means that a considerable number of users can be very

vulnerable to be attack by the old android version's

vulnerabilities.

3) Openness of android apps: Android is completely

open to the third party app company, any person or team can

develops android apps and releases to the app markets for

users to download and install. In addition, android app is

easy to be reverse analysis, so repacking type virus appears a

lot in android platform.

III. TRADITIONAL VULNERABILITY MINING TECHNIQUES

According to different research objects, the traditional
vulnerability mining techniques can be classified into two
categories: Vulnerability mining techniques that use program
as object, namely active vulnerability-mining-techniques;
Vulnerability mining techniques that use vulnerability itself
as object, namely passive vulnerability-mining-techniques.
Figure 1 shows the classification and overview of the
traditional vulnerability mining techniques.

Traditional

vulnerability-mining-

techniques

Active vulnerability-

mining-techniques

Passive vulnerability-

mining-techniques

Manual

Mining

Dynamic

Mining

Attack

Analysis

Patch

Analysi

Static

Mining

Figure 1. Classification of the traditional vulnerability mining techniques.

536

app:ds:program
app:ds:on
app:ds:this
app:ds:occasion
app:ds:in
app:ds:addition

A. Active vulnerability-mining-techniques

Active vulnerability-mining-techniques uses program as
its object, it actively mine the unknown vulnerabilities
through the various analysis of program. This paper
classified it into three types in the perspective of whether it is
needed to run the program [5]: Manual vulnerability-mining-
techniques, static vulnerability-mining-techniques and
dynamic vulnerability-mining-techniques, as shown in
Figure 1.

1) Manual vulnerability-mining-techniques [6]：For a

long time, vulnerability mining is mainly by manual mining

and depending on researcher's experience. Researcher

manually constructed special input parameters for the target

program, then observing the outputs and the target state

changes in order to obtain vulnerability data. Inputs include

valid and invalid inputs and outputs include normal and

abnormal outputs. Abnormal outputs are the signs of

vulnerability. Manual vulnerability-mining-techniques

commonly used in web applications, browsers and other

applications that require man-machine interaction.
Manual mining can be done independently by the

researchers, so it is relatively simple to implement. But it
also has many disadvantages, such as high cost, unstable
results, highly depend on the ability of researchers and
failing to accumulate knowledge experience, etc. After
studying some android apps' vulnerabilities, it can be found
that some abnormal outputs, namely crash outputs, are very
useful for researchers to lighten the mining work. Therefore,
we can build an interactive platform to encourage users to
upload their crash information during the daily life, and take
a good use of the crash information to reduce the cost of
manual vulnerability-mining-techniques.

2) Static vulnerability-mining-techniques [7]: It analysis

the source code or decompilation code of the target program

to mine some potential vulnerabilities in the case that the

program haven't been running. Its main methods include

static string search, context search, etc. It is important for

static mining to found incorrect function calls and function

return values, especially the function calls that haven't done

border checks, the functions that may cause buffer overflow,

the external call functions, the memory shared functions and

the function pointers, etc. To the open source program, we

can mine vulnerability by detecting file structure, naming

conventions and stack pointer which have violated the

security rules. To the non-open source program, firstly we

need to do reverse engineering in order to get the decompile

code which is similar to the source code, and then analyze

the decompile code.
In theory, static vulnerability-mining-techniques can find

all existing vulnerabilities. But the expanding feature
databases and dictionaries will cause a large set of test results,
high false positive rate and other problems. This mining
approach focuses only on analyzing the features of code and
don't care about program's function. So there will be no
vulnerability checks for the program's function and missing
some potential vulnerability. The open-source android

system allows everyone to study and modify its source code,
it also provide convenience for static vulnerability-mining-
techniques. At present, domestic and foreign researchers
mine the vulnerabilities of functions, libraries and calls
mainly through the static analysis of the android source code.

3) Dynamic vulnerability-mining-techniques [8] ： It

takes use of the program’s runtime information to mine the

vulnerability. More specifically, it applies a traversal

searching algorithm of the program’s state space, and then

monitors whether there is something that violate the specific

security attributes during the program’s running time.

Dynamic vulnerability-mining-techniques includes fuzz

testing, stain spread analysis and defects injection, etc. Fuzz

testing is an automated program testing technology, which

uses a large number of semi-valid data as program’s inputs,

and take program’s abnormal outputs as a symbol to discover

program’s security vulnerabilities; Stain spread analysis is a

method that mine vulnerabilities in the simulation or actual

attack environment; Defects injection technology injects

some defective data into the program and then observe

whether the program can operates normally. If the program

operates abnormally, then the program may have

vulnerabilities.
Compared with the other two technologies, fuzz testing

technique has a simpler principle and is easier to understand.
Moreover, the experience from vulnerability discovery to
vulnerability exploit is easy to be reuse. But it also has
advantages such as poor generality, very long cycle time for
constructing a test case, etc. Currently, fuzz testing technique
is used in the vulnerability mining of android Bluetooth
protocol, HTTP protocol and android apps.

B. Passive vulnerability-mining-techniques

Passive vulnerability-mining-techniques take
vulnerability itself as its research objects. We can analyze
and recover the vulnerability information base on the
security patches and the attack samples that we captured.
According to the above definition, passive vulnerability-
mining-techniques can be classified into attack analysis and
patch analysis.

1) Attack analysis [9]： First, we need to capture some

attack samples, and use honeypots to capture attack samples

is a common approach. Honeypot has a lot of mature and

effective systems, such as Minos, Honey Monkeys and so on.

After capturing the attack samples, the key procedure is

doing reverse analysis of the attack samples. Reverse

analysis is the core technology of Attack Analysis. Reverse

analysis is used as a tool to translate the executable binary

program into an equivalent program in a high-level language.

The development of reverse analysis technology drives the

development of attack analysis techniques.
Using attack analysis to mine vulnerability, the

advantages are high pertinence, low false alarm rate and high
timeliness, etc. But relying too heavily on reverse analysis
technology makes attack analysis has significant limitations.
Android apps are compiled by Java language. Java language

537

app:ds:man-machine
app:ds:interaction
app:ds:target
app:ds:program
app:ds:context
app:ds:value

is easier to do reverse analysis than C&C++ language.
Therefore, attack analysis technology has great practical
significance in Android-platform.

2) Patch analysis[10,11]: Patch analysis is mainly

depends on the public vulnerability patches. We can use the

patch information to analyze vulnerability detail such as

vulnerability location, vulnerability exploitation, influence,

etc. Through the comparison of the patched and unpatched

source code or binary code, patch analysis can locate the

vulnerability location. Then we analyze the code comparison

information to understand the more information of the

vulnerability. Finally, we can recover the vulnerability and

fix it. There are two easy methods of code comparison,

comparison of source code and comparison of decompilation

code. The first method is appropriate for the case that there

are only few changes between the patched and unpatched

vulnerability. It commonly used in the vulnerability caused

by string changes and boundary value changes, etc. The

second method is appropriate for the case that the targeted

program can be reversed and we can discover the

vulnerability caused by function parameter changes

according to the decompilation code. There are also some

complicated code comparison methods such as structured

comparison which proposed by Halvar Flake [10] and

comparison based on semantics which proposed by Debin

Gao [11]. These methods can discover some unstructured

changes and displayed in graph.
Patch analysis technique can locate the vulnerability

rapidly and accurately, but highly dependent on the patches
has restricted the development of this kind of technology.
But the situation is much more optimistic in android platform.
Android’s open source and the frequent patches have made
patch analysis a great application prospect in android
platform.

IV. MODEL AND EXAMPLE OF VULNERABILITY MINING

A. Architecture Model

According to the characteristics of android platform and
the general flow of vulnerability mining, this paper presents
a four-layer architecture model of vulnerability mining
techniques in android platform, the four layers are base layer,
mining layer, analysis layer and attack layer, as shown in
figure 2.

Base layer is mainly used to solve the construction
problem of vulnerability mining environment and provide
theory support. As the basis of mining work, base layer
constructed multiple simulation or reality analysis
environment. It also added the special vulnerability
environments that need hardware or other special trigger
conditions. Based on the research of traditional vulnerability
mining techniques, available technologies and tools can be
extracted and transplant into android platform after
optimization. The supportive technologies of this layer
include code analysis, reverse engineering, simulation, etc.

Android Platform

Features Research

Traditional Vulnerability

Mining Techniques

Analysis of

Vulnerability Cause

Determination of

Vulnerability Availability

 Attack Method

Research

Attack Sample

Analysis

Vulnerability attack model

Fuzz

Testing

Vulnerability Threat Model

Attack Sample

Analysis

Patch Contrast

Analysis

Attack

Layer

Analysis

Layer

Mining

Layer

Base

Layer

Figure 2. Architecture model

Mining layer is mainly used to solve the problem that
what kind of technologies can be used to mine the target
object. In particular, this paper presented three technologies
to mine the android vulnerabilities, they are fuzz testing,
attack sample analysis and patch contrast analysis. Finally, a
vulnerability threat model was formed according to the rules
and vulnerability information. The threat model accumulated
a lot of experience and skills of vulnerability mining work,
so it has great significance to the vulnerability mining in
android platform. The supportive technologies of this layer
include android patches comparison technology, attack
samples analysis technology and fuzz testing technology.

Analysis layer is mainly used to confirm if the suspected
vulnerability is an exploitable vulnerability. And then debug
the vulnerability and monitor its implementation process in
order to analyze the causes of it. The supportive technologies
of this layer mainly include data tracking, control flow
analysis and abnormal monitoring, etc.

Attack layer is mainly used to evaluation its harmfulness,
stability and reliability after confirming the vulnerability, and
then study its exploit methods. Finally, a vulnerability attack
model was formed based on the research of the existing
exploit methods and reverse analysis of attack samples. The
attack model can provide a lot of exploit methods for android
platform. The supportive technologies of this layer mainly
include shellcode construction, simulation and permission
attack, etc.

B. Cases Study

Based on the above four-layer architecture model of
vulnerability mining techniques and the three key
technologies of the mining layer, we will study the android
platform vulnerability mining techniques with practical
examples in this section.

1) Source code comparison based on the android

vulnerability patches：
Since the function call relationship is very complex in

android, Google or other third-party companies hope to make
minimal changes to fix the vulnerability. Through the
analysis of the numerous vulnerability patches, we found that

538

the changes that vulnerability patches caused are not too
large and the program’s execution process barely changed.
Under this kind of patch strategy, these patches may bring
new vulnerabilities.

In this paper, we name the vulnerable code location as V-
point (Vulnerability Point), and the patched code location as
P-point (Patch Point). In android platform, V-point is
generally a single vulnerability point, but P-point may be a
set of one or multiple patched points. According to the
relative position relationship of V-point and P-point, this
paper classified the possible conditions into the following
three cases:

a) P-point overlap with V-point: That means the

patches have directly modified the codes at the vulnerable

location. To be specific, the patches have replaced the basic

block or unsafe functions at the vulnerable location or

directly modified the logical conditions of the vulnerability.

However, this kind of patched method does not take the

complex real-world situations into account. It lacks an

overall consideration. In practical situations, vulnerabilities

of the same or similar attributes as the patched one may still

exist. What’s worse, the patches have exposed the location

and attributes of the vulnerability, so researchers can use the

exposed information to dig out other unknown vulnerabilities.

b) P-point and V-point are in the same function: That

means the vulnerability point code and the patch point code

are in the same function. In this case, the patches only

consider the vulnerability’s context environment and may

not consider the influence of the patches on global variables

or logical conditions. If there is a path that can bypass the P-

point to directly trigger the V-point. That means the patches

have caused new vulnerabilities.

c) P-point and V-point are in the different function:

That means the vulnerability point code and the patch point

code are in the different function. This kind of patches seems

like very covert and is hard for reverse analysis. In fact, it is

most likely to cause new vulnerabilities in this condition.

Function call relationship of android is quite complex, so

once the patches have errors in checking each function’s

parameters, it is likely to cause new vulnerabilities.
Source code comparison technology that based on the

android vulnerability patches can quickly locate the position
of the patched vulnerability. And with the help of some
auxiliary means like dynamic tracking and code analysis, we
can understand the principles of the vulnerability and know
how to exploit it. This technology makes vulnerability
mining work more targeted. Here we take the android adb
setuid vulnerability, a kind of privilege escalation
vulnerabilities, as an example to illustrate its feasibility.

In android, adb process starts running with root
permission in order to complete some initialization work. If
attackers can prevent adb process’s permission reduced from
root to shell, then adb process will continue to be run with
root permission, which means we can achieve the root
permission without asking the system. Table 3 shows a
comparison between the core code of android adb setuid
vulnerability before and after patched.

TABLE II. COMPARISON OF ADB SETUID VULNERABILITY

Before patched After patched

android_src/system/
core/adb/adb.c

/* then switch user and

group to "shell" */
setgid(AID_SHELL);

setuid(AID_SHELL);

android_src/system/core/adb/adb.c
/* then switch user and group to "shell" */

if (setgid(AID_SHELL) != 0) {

exit(1); }
if (setuid(AID_SHELL) != 0) {

exit(1); }

After comparing the code before and after patched, we
can obtain the following results: This vulnerability’s cause is
that the code before patched has not check the return value of
setuid() function. When the setuid() function execution
failed, there is no errors alarm, so attackers can go on
running the program and eventually get root permission. The
return value of functions is always be neglected by
programmers. Programmers think setuid() function will not
fail because the getuid() function will never fail, so they
ignore to check the return value. After the comparison
between the core code before and after patched, we analyzed
the exploit program and get more information about the
vulnerability: Adb process starts running with root
permission, and after that, in a normal case, adb process will
call setuid() function to reduce its permission from root to
shell. But attackers can construct a large number of zombie
processes to filled the whole program and make setuid()
function call failed. Then, attackers start a large number of
adb subprocess to force the reboot of the adb process. Again,
adb process starts running with root permission, but this time,
setuid() function call failed, so adb process can still be
running with root permission. That is how an insignificant
function return value caused a privilege escalation
vulnerability.

2) Attack sample analysis based on Java reverse

engineering:
For the maximum benefits, attackers often use the latest

vulnerabilities to attack the android platform. So we can
discover the unpublished 0day vulnerability by attack sample
analysis. Reverse engineering technology and code analysis
technology are the core technology of attack sample analysis.

Android apps’ setup files are APK format. The APK
format files are actually ZIP format files, but the suffix name
was changed to APK. After unzip the APK files, we can see
the Dex files. Dex file is the android dalvik executive
program. We take HelloWorld program as an example to
look at the file structure of android app, as shown in table 4.

Java source file compiled by javac to generate the class
file, then generate the binary file that can run in the Dalvik
virtual machine through dx.bat. Therefore, the key to
decompile APK file is to reverse class.dex files to Java code
files. We can see the class.dex files after unzipping the APK
file. Through tool dex2jar, we can transform the classes.dex
files into the classes_dex2jar.jar files, just open the tool and
run dex2jar.bat classes.dex in the command line interface.
Then we can use tool JD-GUI to open the classes_dex2jar.jar
files, and you can see the java code of class.dex files in the
tool’s window. After these steps, we have reversed the
android attack sample to Java code for further analysis.

539

app:ds:be
app:ds:specific
app:ds:analysis
app:ds:transform

TABLE III. HELLOWORLD PROGRAM’S FILE STRUCTURE

Directory Name Description

Src Directory of Java source code, generate

class.dex file after compiling.

Gen Automatically generated directory, including

the famous R.java file.

Android 2.3.5 Android sdk package that this app depends on.

Assets Store the raw files, files in this directory can be
packaged in this app.

Bin The path of Java compiler output.

Res Store the resource files, including menus, lists,

images, etc.

AndroidManifest.
xml

Provide the basic information about this app,
especially the permissions.

Proguard-

project.txt

Android code proguard, use to increase the

difficulty of reverse engineering.

Project.properties Define some basic attributes of the android
project.

Researchers of the North Carolina State University have
launched a project named Android Malware Genome Project
[1]. The project aims to share malware samples and reverse
analysis results in android platform. The project have
collected 1260 android malware samples in 49 different
malware families and identified a series of android malware
characteristics, such as use root-level exploits to fully
compromise the android security, turn the android phones
into a botnet and send out background short messages, etc.
Among them, around one third of the malware samples use
privilege escalation vulnerabilities to get the top permission
of android system, posing the highest level of threats to
users’ security and privacy. They have identified seven kinds
of known privilege escalation vulnerabilities through the
analysis of attack samples. Therefore, attack sample analysis
that based on Java reverse engineering technology can
effectively discover the vulnerabilities in android malware,
especially the privilege escalation vulnerability.

3) Fuzz Testing for Intents:
Intent is a unique mechanism in android to exchange data

between android processes. The android apps are composed
of four components as follows: activity, service, content
provider and broadcast receiver. These four components are
independent, and Intents help them communicate with each
other. Intent is responsible for the description of the app’s
action, data, etc. Then according to the description, android
can find the corresponding component and transfer Intents to
it, and finally complete the component call.

A fuzzer is a testing tool that sends unexpected or
incorrect inputs to an application in an attempt to cause it to
fail. Intent Fuzzer [12] is a fuzzer for Intents. It sends a large
number of invalid inputs to the application to cause errors.
Errors are crashing bugs, performance issues, etc. And then
find the reason why application crashed. The tool can fuzz
either a single component or all components. It works well
on broadcast receivers but offers less coverage for services.
But only single activities can be fuzzed, not all them at once,
which limits the tool’s range of application and efficiency.

We test Intent Fuzzer in android simulator. We select the
desktop clock application and do a single fuzz test to the
broadcast of the desktop clock. After the above operations,

Intent Fuzzer will construct a large number of invalid Intents
to the broadcast receiver of the desktop clock. Soon, we see
some errors of the desktop clock, which means that the
invalid Intents have crashed the desktop clock program.
Then we analysis the crash logs to find the crash reasons,
which often represent the vulnerabilities. Therefore, fuzz
testing for Intents can quickly and efficiently obtain the error
logs and further to mine the potential vulnerabilities.

V. CONCLUSION

The research of android platform vulnerability mining
work is just at its beginning, our present study mainly
concentrated in mining layer, the core layer of the four-layer
architecture model. We are trying to use the traditional
vulnerability mining techniques to solve some certain types
of vulnerability, like the privilege escalation vulnerabilities.
In the future, we need to focus our work on all the four layers
of the four-layer model at the same time. Also, the research
of android's unique vulnerability and the automatic mining of
android platform vulnerability should be a hot topic.

ACKNOWLEDGMENT

This work is supported by National Natural Science
Foundation of China (61272422).

REFERENCES

[1] Zhou, Yajin, and Xuxian Jiang. "Dissecting android malware:
Characterization and evolution." Security and Privacy (SP), 2012
IEEE Symposium on. IEEE, 2012.

[2] Beijing NQ Mobile Inc. 2013Q1 global mobile security report:
http://cn.nq.com/safety-report/.

[3] iiMedia Research. 2013Q1 China smart phone market monitoring
report: http://www. iimedia.cn/36650.html.

[4] Gui Jiaping, Zhou Yongkai. "Research on prevention model of
malicious code in smart phone." Computer Technology and
Development 20.1 (2010): 163-166.

[5] Ernst, Michael D. "Static and dynamic analysis: Synergy and
duality."WODA 2003: ICSE Workshop on Dynamic Analysis. 2003.

[6] Weissman, Clark.System security analysis/certification methodology
and results. System Development Corporation, 1973.

[7] Bush, William R., Jonathan D. Pincus, and David J. Sielaff. "A static
analyzer for finding dynamic programming errors."Software-Practice
and Experience 30.7 (2000): 775-802.

[8] Cadar, Cristian, et al. "EXE: automatically generating inputs of
death." ACM Transactions on Information and System Security
(TISSEC) 12.2 (2008): 10.

[9] Serjantov, Andrei, and Peter Sewell. "Passive attack analysis for
connection-based anonymity systems." Computer Security–ESORICS
2003. Springer Berlin Heidelberg, 2003. 116-131.

[10] Flake, Halvar. "Structural comparison of executable objects." Proc. of
the International GI Workshop on Detection of Intrusions and
Malware & Vulnerability Assessment, number P-46 in Lecture Notes
in Informatics. 2004.

[11] Gao, Debin, Michael K. Reiter, and Dawn Song. "Binhunt:
Automatically finding semantic differences in binary programs."
Information and Communications Security. Springer Berlin
Heidelberg, 2008. 238-255.

[12] iSECpartners. intent-fuzzer: https://www.isecpartners.com/tools/
mobile-security/intent-fuzzer.aspx.

540

app:ds:privilege
app:ds:escalation
app:ds:privilege
app:ds:escalation
app:ds:privilege
app:ds:escalation
http://cn.nq.com/safety-report/
https://www.isecpartners.com/tools/%20mobile-security/intent-fuzzer.aspx
https://www.isecpartners.com/tools/%20mobile-security/intent-fuzzer.aspx

