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Abstract

The single-time nonlocal Lagrangians corresponding to the Fokker-type action inte-
grals are obtained in arbitrary form of relativistic dynamics. The symmetry conditions
for such Lagrangians under an arbitrary Lie group acting on the Minkowski space are
formulated in various forms of dynamics. An explicit expression for the integrals of
motion corresponding to the Poincaré invariance is derived.

Introduction

There are various approaches to relativistic direct-particle-interaction theory [1–3]. This
theory does not use the notion of fields as mediators of interaction, but considers only
particle degrees of freedom to be physically meaningful. The Fokker-type relativistic
mechanics [4–6] which is the oldest attempt to construct such a theory has direct rela-
tion to the field description. It is based on the manifestly Poincaré-invariant, variational
principle formulated in terms of four-dimensional coordinates and velocities of particles.
Such a variational principle was first introduced for the electromagnetic interaction by
Schwarzshild, Tetrode, and Fokker at the beginning of the century and was developed by
various authors (see references in [1, 5, 6]). Later this description was extended on other
relativistic interactions [6, 7]. The equations of motion following from such a variational
principle explicitly answer the demand of relativistic invariance and can be compared with
corresponding field theory expressions. However, this approach is not free of difficulties
both on physical and mathematical levels. The cost for a manifestly Poincaré-invariant
four-dimensional description is the necessity to use the many-time formalism, which com-
plicates the physical interpretation of its results. Mathematically, it is hard to motivate
obtaining the equations of motion from the action integrals which are obviously divergent
because integration is carried out on the whole of the world lines of the particles [4].

It was showed in [8, 9] that many-time Fokker-type action integrals can be transformed
into single-time actions with nonlocal Lagrangians depending on the three-dimensional
coordinates of particles and on derivatives of the coordinates with respect to parameter
t. Such Lagrangians provide us with a useful tool for the consideration of the various
approximations [8–10] as well as for the transition to the predictive relativistic mechanics
and Hamiltonian formalism [11,12]. It was demonstrated [9] that nonlocal Lagrangians

Copyright c© 1996 by Mathematical Ukraina Publisher.

All rights of reproduction in any form reserved.



358 R. GAIDA and V. TRETYAK

corresponding to the manifestly Poincaré-invariant action integrals satisty the Poincaré-
invariance conditions within the framework of a three-dimensional Lagrangian description
of interacting particle systems [13]. The conservation laws which follow from such in-
variance were investigated via Noether’s theorem. Moreover, as was stressed in [9], the
nonlocal single-time Lagrangians which are found on the basis of the Fokker-type action
integrals represent a close form for a wide class of solutions of the equations expressing
the requirement of invariance of a Lagrangian description of particle systems underthe
Poincaré group.

The purpose of this report is to study possible generalizations of this development. In
the previous papers [8, 9] the evolution parameter t was chosen as coordinate time x0. This
choice corresponds to the instant form of relativistic dynamics in the Dirac’s terminology
[14]. Not long ago the single-time Lagrangian description of particle systems was extended
to an arbitrary form of relativistic dynamics defined geometrically by means of the space-
like foliations of the Minkowski space [15]. The conditions of the Poincaré-invariance
were reformulated in an arbitrary form of dynamics and the expressions for corresponding
conserved quantitites were obtained. Here we shall show how one can present solutions
of Poincaré-invariance conditions in an arbitrary form of Lagrangian dynamics for the
interactions originally described by a Fokker-type action.

In Sec.1 we derive a single-time Lagrangian function corresponding to the Fokker-type
action integral in an arbitrary form of relativistic dynamics. The Poincaré-invariance
conditions for such a Lagrangian are examined in Sec.2. Finally, in Sec.3 we find an
explicit expression for conserved quantities in the terms of interaction potential functions
entering Fokker-type integrals.

1 Fokker-type action integrals in an arbitrary form
of relativistic dynamics

We shall be concerned with a dynamical system consisting of N interacting point particles.
It is convenient to describe the evolution of this system in the four-dimensional Minkowski
space M4 with coordinates xµ, µ = 0, 1, 2, 3. We use the metric ηµν =diag(1,−1,−1,−1).
The motion of the particles is described by the world lines γa : R → M4, a = 1, ..., N ,
which can be parametrized by arbitrary parameters τa. In coordinates we have

γa : τa 7→ xµ
a(τa). (1.1)

We assume that the equations of motion for the system can be obtained from the Fokker-
type variational principle

δS = 0, (1.2)

where the action S has the form

S =
∑
a

∫
dτaΛa(xa, ua) +

∑
a<

∑
b

∫
dτa

∫
dτbΛab(xa, xb, ua, ub). (1.3)

The functions Λa and Λab depend on the four-dimensional particle coordinates xµ
a and on

the first derivatives

uµ
a =

dxµ
a

dτa
. (1.4)
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It is well known that physical information about motion of the system is contained in
the world lines γa considered as unparametrized paths in the Minkowski space. Therefore,
the action (1.3) is assumed to be parameter-invariant. This assumption leads to the
following conditions:

uµ
a

∂Λa

∂uµ
a

= Λa, uµ
a

∂Λab

∂uµ
a

+ uµ
b

∂Λab

∂uµ
b

= Λab. (1.5)

Since in the Poincaré–invariant theory any particle cannot move with a velocity larger
than that of light c, the world lines γa must be time-like lines, and for the tangent vectors
(1.4) we have the unequality

u2
a ≡ ηµνu

µ
auν

a ≡ ua · ua > 0. (1.6)

Then a solution of the equations (1.5) can be written in the form

Λa =
√

u2
afa(xa, ûa), Λab =

√
u2

au
2
bfab(xa, xb, ûa, ûb), (1.7)

where ûµ
a = uµ

a/
√

u2
a. In the case of the Poincaré–invariant theory it will be assumed

additionally that the arguments of the functions (1.7) are translationally-invariant Lorentz
scalars. This gives

fa = const = −mac, (1.8)

fab = −c−1Fab(ρab, σab, σba, ωab), a < b, (1.9)

where ma is a rest mass of the particle a, the constant c is introduced for convenience,
and the set of two-body invariants in (1.9) is chosen in the form [7,16,8]

ρab = (xa − xb)2, σab = ηab(xa − xb) · ûa, ωab = ûa · ûb, (1.10)

with ηab = sgn(b− a).
The concept of the forms of relativistic dynamics [14] may be introduced within the

framework of the single-time three-dimensional Lagrangian formalism in the following way
[15,10]. Let us consider the foliation Σ of the Minkowski space M4 by the hypersurfaces

t = σ(x), t ∈ R, (1.11)

with the next property. Every hypersurface Σt = {x ∈ M4|σ(x) = t} must intersect the
world lines γa of all particles in one and only one point

xa(t) = γa

⋂
Σt. (1.12)

This allows us to consider the t as an evolution parameter of the system [17,18,15]. In the
Poincaré-invariant theory, when we consider only time-like world lines, the hypersurfaces
(1.11) must be space-like or isotropic

ηµν(∂µσ)(∂νσ) ≥ 0, (1.13)

where ∂µ = ∂/∂xµ. Then we have ∂0σ > 0, and the hypersurface equation (1.11) has the
solution x0 = ϕ(t,x), where x = (xi), i = 1, 2, 3. Therefore, the constraint xa(t) ∈ Σt

enables us to determine a zero component of xa(t) in the terms of t and xi
a(t), i = 1, 2, 3.



360 R. GAIDA and V. TRETYAK

The parametric equations (1.1) of the world lines of particles in the given form of dynamics
have the form

x0 = ϕ(t,xa(t)) ≡ ϕa, xi = xi
a(t). (1.14)

The evolution of the system is determined by 3N functions t 7→ xi
a(t). They may be

considered as representatives for the sections s : R → F, t 7→ (t, xi
a(t)) of the trivial fibre

bundle π : F → R with a 3N-dimensional fibre space E = R3N . The latter constitutes the
configuration space of our system.

Three Dirac’s forms of relativistic dynamics correspond to the following hypersurfaces
(1.11): x0 = ct (instant form), x0 − x3 = ct (front form), and x · x = c2t2 (point form).
Other examples may be found in [15].

Now we assume that the evolution of the system under consideration is completely
determined by specifying an action functional

S =
∫

dtL. (1.15)

The Lagrangian function L : J∞π → R is defined on the infinite-order jet space of the
fibre bundle π : F → R with the standard coordinates x

i(s)
a [22–24]. The values of these

coordinates for the section s : t 7→ (t, xi
a(t)) belonging to the corresponding equivalence

class from J∞π are x
i(s)
a (t) = dsxi

a(t)/dts, s = 0, 1, 2, .... The variational principle (1.2)
with action (1.15) gives Euler-Lagrange equations of motion

EaiL ≡
∞∑

s=0

(−D)s ∂L

∂x
i(s)
a

= 0, (1.16)

where D is an operator of the total time derivative

D =
∑
a

∞∑
s=0

xi(s+1)
a

∂

∂x
i(s)
a

+
∂

∂t
. (1.17)

Now we consider the transition from Fokker-type action (1.3) to its single-time counter-
part (1.15) in an arbitrary form of relativistic dynamics. Because of parametric invariance
of the action (1.3) we can choose the parameters τa to be equal to ta such that xa(ta) ∈ Σta .
This allows us to determine zero components of the four-vectors xa(ta) and ua(ta) in the
terms of three-dimensional quantities:

x0
a(ta) = ϕ(ta,xa(ta)) = ϕa(ta), (1.18)

u0
a(ta) =

d

dta
ϕ(ta,xa(ta)) = Dϕa(ta). (1.19)

Thus

ûa = c−1Γa(ta)(Dϕa(ta),va(ta)), (1.20)

where va(ta) = dxa(ta)/dta and

cΓ−1
a (t) =

√
(Dϕa(t))2 − v2

a(t) =
√

u2
a(t). (1.21)
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The following transformations are quite similar to that used in paper [8] within the
framework of the instant form of dynamics. Using (1.7)–(1.9) and (1.21) in (1.3), we
obtain

S = −
∑
a

mac
2
∫

dtaΓ−1
a (ta)

− c
∑
a<

∑
b

∫
dta

∫
dtbΓ−1

a (ta)Γ−1
b (tb)Fab(xa(ta), xb(tb), ûa(ta), ûb(tb)). (1.22)

Identifying the integration variables in each term of the sums in (1.22) gives

S = −
∑
a

mac
2
∫

dtaΓ−1
a (t)− c

∑
a<

∑
b

∫
dt1

∫
dt2χab[t1, t2], (1.23)

where

χab[t1, t2] = Γ−1
a (t1)Γ−1

b (t2)Fab(xa(t1), xb(t2), ûa(t1), ûb(t2)). (1.24)

Changing the integration variables in the double sums of (1.23), (t1, t2) 7→ (t, θ), where
t = λt1 + (1 − λ)t2, θ = c(t1 − t2), and λ ∈ R is an arbitrary number (see [19,8]), we get
the expression (1.15) with the Lagrangian function

L = Lf − U, (1.25)

where

Lf = −
∑
a

mac
2Γ−1

a (t) (1.26)

is a free-particle Lagrangian in an arbitrary form of dynamics and

U =
∑
a<

∑
b

∫
dθχab

(
t + (λ− 1)

θ

c
, t + λ

θ

c

)
(1.27)

is an interaction potential. The shifts of the time arguments in (1.27) may be expressed
by means of the exponential operators exp(αDa), where

Da =
∞∑

s=0

xi(s+1)
a

∂

∂x
i(s)
a

. (1.28)

Using the obvious relation∑
a

Da = D − ∂

∂t
(1.29)

and commutativity of the operators Da and Db, we obtain

U =
∑
a<

∑
b

∫
dθ exp

(
θ

c
(λD −Da)

)
χab

(
t− θ

c
, t,xa,xb,va,vb

)
. (1.30)

It should be noted that an arbitrary parameter λ enters the Lagrangian function (1.30)
only together with the operator of a total time derivative D and, therefore, has no effect
on the observable quantities.
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In the case of Poincaré-invariant interactions determined by the relation (1.9), we have

χab[t1, t2] = (Γ′a)
−1Γ−1

b Fab(ρab, σab, σba, ωab), (1.31)

where the arguments (1.10) of the functions Fab are expressed in the three-dimensional
terms (a < b)

ρab = (ϕ′a − ϕb)2 − r2
ab, (1.32)

σab = c−1Γ′a[(ϕ
′
a − ϕb)Dϕ′a − rab · va], (1.33)

σba = c−1Γb[(ϕ′a − ϕb)Dϕb − rab · vb], (1.34)

ωab = c−2Γ′aΓb[(Dϕ′a)Dϕb − va · vb], (1.35)

and the following abbreviations are used

rab ≡ xa − xb, ϕ′a ≡ exp
(
−θ

c

∂

∂t

)
ϕa, Γ′a ≡ exp

(
−θ

c

∂

∂t

)
Γa. (1.36)

For the instant form of dynamics, when

σ(x) = c−1x0, ϕ(t,x) = ct, (1.37)

we return to the expressions of the paper [9]:

Γa = (1− v2
ac
−2)−1/2 ≡ γa, (1.38)

ρab = θ2 − r2
ab, σab = −γa(θ + ηabrab · vac

−1), ωab = γaγb(1− va · vbc
−2). (1.39)

As another interesting example we consider the class of isotropic forms of dynamics
determined by the hyperplanes

xµnµ = ct, nµnµ = 0, (1.40)

with a null vector nµ = (1,n), |n| = 1. In this case we have

ϕ(t,x) = ct + n · x, (1.41)

and

Γa = [(1 + n · vac
−1)2 − v2

ac
−2]−1/2. (1.42)

For the invariants (1.32)–(1.35) in these forms of dynamics, we find

ρab = (θ − n · rab)2 − r2
ab, (1.43)

σab = −Γa[(θ − ηabn · rab)(1 + n · vac
−1)) + ηabrab · vac

−1], (1.44)

ωab = ΓaΓb[(1 + n · vac
−1)(1 + n · vbc

−1)− va · vbc
−2]. (1.45)

Within the framework of relativistic Lagrangian mechanics such forms of dynamics have
the most interesting applications in the two-dimensional space-time M2, when (n = ±1)

Γa = (1 + 2nvac
−1)−1/2, (1.46)

ρab = θ2−2θnrab, σab = −γa[θ(1+nvac
−1)−nηabrab], ωab = Γ−1

a Γb−Γ−1
a Γb.(1.47)

Several models of the relativistic direct particle interactions in this form of dynamics have
been considered in [18, 20, 21].
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2 Symmetries in the Lagrangian description

Let us consider an arbitrary r-parametric Lie group G acting on M4 by the point trans-
formations g : M4 → M4,

xµ 7→ (gx)µ = xµ + λαζµ
α + o(λ), (2.1)

where λα, α = 1, ..., r , are parameters of the group. The vector fields

Xα = ζµ
α∂µ (2.2)

satisfy the commutational relations of the Lie algebra of the group G,

[Xα,Xβ] = cγ
αβXγ , α, β, γ = 1, . . . , r, (2.3)

with the structure constants cγ
αβ .

The action (2.1) of the group G on M4 can be easily extended on the world-lines γa

by the rule

γa 7→ gγa = {gx|x ∈ Imγa}. (2.4)

But in the given form of dynamics the world lines γa are determined by the functions
t 7→ xi

a(t) or, in other words, by the sections s of the bundle π. Therefore, (2.4) induces
an action of the group G on J∞π by the Lie-Bäcklund transformations [22–24]. As was
showed in [15], the generators of such transformations have the form

Xα =
∑
a

∞∑
s=0

(Dsξi
aα)

∂

∂x
i(s)
a

, (2.5)

where

ξi
aα = ζi

aα − vi
aηaα, (2.6)

and

ζi
aα = ζi

α(t,xa), ηaα = (X ασ)(t,xa), vi
a = xi(1)

a . (2.7)

The Lie-Bäcklund vector fields (2.5) obey the same commutational relations as (2.2),

[Xα, Xβ] = cγ
αβXγ , (2.8)

and commute with a total time derivative (1.17)

[Xα, D] = 0. (2.9)

For the Poincaré group we have the following ten vector fields corresponding to its
natural action on M4:

X T
µ = ∂µ, (2.10)

XL
µν = xµ∂ν − xν∂µ, (2.11)

with commutational relations

[X T
µ ,X T

µ ] = 0, (2.12)
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[X T
µ ,XL

ρσ] = ηµρX T
σ − ηµσX T

ρ , (2.13)

[XL
µν ,XL

ρσ] = ηνρXL
µσ + ηµσXL

νρ − ηµρXL
νσ − ηνσXL

µρ. (2.14)

Thus, we obtain the next realization of the Poincaré algebra in terms of Lie-Bäcklund
vector fields (2.5)

XT
µ =

∑
a

∞∑
s=0

Ds[δi
µ − vi

aσaµ]
∂

∂x
i(s)
a

, (2.15)

XL
µν =

∑
a

∞∑
s=0

Ds[xaµδi
ν − xaνδ

i
µ − vi

a(xaµσaν − xaνσaµ]
∂

∂x
i(s)
a

, (2.16)

where we must use (1.14) for elimination of x0
a, and we denote

σaµ ≡ (∂µσ)(t,xa). (2.17)

Making use of the hypersurface equation (1.11), we find

σa0 = (∂ϕa/∂t)−1 ≡ ϕ−1
at , (2.18)

σai = −ϕ−1
at (∂ϕa/∂xai) ≡ −ϕ−1

at ϕai. (2.19)

It is convenient to introduce the vector fields

H = −cXT
0 , Pi = XT

i , Ji = −1
2
εijkX

L
jk, K = c−1XL

i0, (2.20)

obeying the following commutational relations

[H,Pi] = 0, [Pi,Pj ] = 0, [H,Ji] = 0, [Pi,Jk] = −εiklPl, (2.21)

[Ji,Jk] = −εiklJl, [Ki,Jk] = −εiklKl, [Ki,Kj ] = c−2εijkJk, (2.22)

[H,Ki] = Pi, [Pi,Kj ] = δijc
−2H. (2.23)

Inserting (2.18), (2.19) into (2.15), (2.16), we obtain the realization of the Poincaré algebra
which is convenient for consideration of symmetries of the single-time three-dimensional
Lagrangian description [15]:

H = c
∑
a

∞∑
s=0

Ds[vi
aϕ

−1
at ]

∂

∂x
i(s)
a

, (2.24)

Pi =
∑
a

∞∑
s=0

Ds[δj
i + vj

aϕaiϕ
−1
at ]

∂

∂x
j(s)
a

, (2.25)

Ji = εikl

∑
a

∞∑
s=0

Ds[xk
a(δ

j
l + vj

aϕalϕ
−1
at )]

∂

∂x
j(s)
a

, (2.26)
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Ki = c−1
∑
a

∞∑
s=0

Ds[−ϕaδ
j
i + vj

a(xai − ϕaϕai)ϕ−1
at ]

∂

∂x
j(s)
a

. (2.27)

The symmetry of a Lagrangian description of the interacting particle system under the
group G means the invariance of the Euler-Lagrange equation (1.16) under corresponding
Lie-Bäcklund transformations generated by the vector fields (2.5). It was showed and
discussed in [13,10] that the sufficient conditions for the symmetry under Poincaré group
have the form

XαL = DΩα, α = 1, · · · , 10, (2.28)

with auxiliary functions Ωα satisfying the consistency relations

XαΩβ −XβΩα = cγ
αβΩγ . (2.29)

Let us examine these conditions for the nonlocal Lagrangians corresponding to the
manifestly Poincaré-invariant Fokker-type action. To do it, we need the following formula
for derivatives of the interaction potential (1.30) [19,8]

∂U

∂x
i(s)
a

=
∫

dθ exp
(

θ

c
λD

)∑
b(>a)

exp
(
−θ

c
Da

)[
(λ− 1)sθs

css!
∂χab

∂xi
a

+

(λ− 1)s−1θs−1

cs−1(s− 1)!
∂χab

∂vi
a

(1− δ0s)

]
+

∑
b(<a)

exp
(
−θ

c
Db

)[
λsθs

css!
∂χba

∂xi
a

+
λs−1θs−1

cs−1(s− 1)!
∂χba

∂vi
a

(1− δ0s)

]}
. (2.30)

Taking this expression, we obtain after some calculations that nonlocal Lagrangians de-
termined by the formulae (1.25)–(1.27) for the case of Poincaré-invariant interactions
(1.31), (1.32) indeed satisfy the conditions (2.26), (2.27) with the following functions
Ωα, α = 1, ..., 10:

Ωα =
∑
a

mac
2ηaαΓ−1

a +
∑
a<

∑
b

∫
dθ exp

(
θ

c
(λD −Da)

)
χab ×[

λ exp(−θ

c

∂

∂t
)ηaα + (1− λ)ηbα

]
. (2.31)

This conclusion extends the result of papers [8,9] on an arbitrary form of relativistic
dynamics.

3 Conservation laws for nonlocal Lagrangians

The important corollary of symmetry conditions (2.28), (2.29) for an arbitrary r-parametric
Lie group is the existence of r conservation laws

DGα = 0, α = 1, ..., r, (3.1)
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for the quantities Gα which can be explicitly determined in terms of the Lagrangian func-
tion L and auxiliary functions Ωα. This statement, which is well known as the Noether’s
theorem, follows immediately from the identity [22,23]

XαL =
∑
a

ξi
aαEaiL + D

∑
a

∞∑
s=o

πai,sD
sξi

aα, (3.2)

which holds for an arbitrary Lie-Bäcklund vector field (2.5). Here

πai,s =
∞∑

n=s

(−D)n−s ∂L

∂x
i(n+1)
a

(3.3)

are Ostrogradskyj’s momenta. Making use of the identity (3.2) in the symmetry conditions
(2.28), one readily checks that for the solutions of Euler-Lagrange equation (1.16) the
conservation laws (3.1) hold with

Gα =
∑
a

∞∑
s=o

πai,sD
sξi

aα − Ωα. (3.4)

In this section we evaluate explicitly the conserved quantities (3.4) corresponding to the
Lagrangian function (1.25) which obeys the symmetry conditions (2.28), (2.29). Firstly,
we shall consider the Ostrogradskyj’s momenta πai,s. We make use of the formula (2.30)
to bring (3.3) to the form

πai,s =
∂Lf

∂vi
a

δ0s −
∫

dθ exp
(

θ

c
λD

)∑
b(>a)

exp
(
−θ

c
Da

)[
(λ− 1)sθs

css!
∂χab

∂vi
a

+

∞∑
n=0

(λ− 1)n+s+1θs+1

cn+s+1(n + s + 1)!
(−θD)nEaiχab

]
+
∑

b(<a)

exp
(
−θ

c
Db

)[
λsθs

css!
∂χba

∂vi
a

+

∞∑
n=0

λn+s+1θs+1

cn+s+1(n + s + 1)!
(−θD)nEaiχba

]}
. (3.5)

The equality

1
(n + s + 1)!

=
1

n!s!

∫ 1

0
dτ(1− τ)sτn (3.6)

allows us to perform the formal summation over n with the result

πai,s =
∑
a

maΓa(vai − ϕaiDϕa)δ0s −
∫

dθ exp
(

θ

c
λD

)∑
b(>a)

exp
(
−θ

c
Da

)
×

[
∂χab

∂vi
a

+
(λ− 1)θ

c

∫ 1

0
dτ exp

(
θ

c
(τ(1− λ)D

)
Eaiχab(1− τ)s

]
(λ− 1)sθs

css!
+

∑
b(<a)

exp
(
−θ

c
Db

)[
∂χba

∂vi
a

+
λθ

c

∫ 1

0
dτ exp

(
−θ

c
τλD

)
Eaiχba(1− τ)s

]
λsθs

css!

 , (3.7)

where expression (1.26) for the free-particle Lagrangian Lf has been used.
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Inserting (3.7) and (2.31) into (3.4) and summing over s, we obtain

Gα =
∑
a

maΓa[(vai − ϕaiDϕa)ξi
aα − c2Γ−2

a ηaα]−

∑
a<

∑
b

∫
dθ exp

(
θ

c
(λD −Da)

)[
∂χab

∂vi
a

exp
(

θ

c

∂

∂t

)
ξi
aα +

∂χab

∂vi
b

ξi
bα+

χab

(
λ exp

(
−θ

c

∂

∂t

)
ηaα + (1− λ)ηbα

)]
+

(λ− 1)θ
c

∫ 1

0
dτ exp

(
θ

c
(τ(1− λ)D

)
(Eaiχab) exp

(
−θ

c

∂

∂t

)
ξi
aα +

λθ

c

∫ 1

0
dτ exp

(
−θ

c
τλD

)
(Ebiχba)ξi

bα

]
. (3.8)

Using in (3.8) the definition (2.6) of components of the Lie-Bäcklund fields (2.5) and taking
into account the following relations

ζ0
aα ≡ ζ0

α(t,xa) = ϕaiζ
i
aα + ϕatηaα, (3.9)

α

∫ 1

0
dτeατDD = eαD − 1, (3.10)

∫
dθ exp

(
θ

c
(λD −Da)

)
Da =

∫
dθ exp

(
θ

c
(λD −Da)

)(
λD + c

∂

∂θ

)
, (3.11)

∫
dθ exp

(
θ

c
(λD −Da)

)
Db =

∫
dθ exp

(
θ

c
(λD −Da)

)(
(1− λ)D − c

∂

∂θ
− ∂

∂t

)
(3.12)

(the two latter equalities are valid under the action on an arbitrary two-particle expression
such as appears in the double sum in (3.8)), we can write down the explicit formula for
the conserved quantities

Gα =
∑
a

maΓa(ζi
aαvai − ζ0

aαDϕa)−

∑
a<

∑
b

∫
dθ

{
ζi
aα exp

[
θ

c

(
Db +

∂

∂t

)]
∂χab

∂vi
a

+ ζi
bα exp

(
−θ

c
Da

)
∂χab

∂vi
b

+

ηaα exp
[
θ

c

(
Db +

∂

∂t

)](
χab − vi

a

∂χab

∂vi
a

)
+

ηbα exp
(
−θ

c
Da

)(
χab − vi

b

∂χab

∂vi
b

)
+

θ

c

∫ 1

0
dτ exp

(
θ

c
(τD −Da)

)[
∂χab

∂xi
b

ζi
bα +

∂χab

∂vi
b

(Dζi
bα − vi

bDηbα)+(
∂χab

∂t
+ c

∂χab

∂θ

)
ηbα + χabDηbα

]}
. (3.13)

We note that an arbitrary parameter λ is missing in the final formula for the conserved
quantities. The same is also true for the particle equations of motion [8, 9].
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The expressions for the components of the Lie-Bäcklund vector fields (2.24)–(2.27)
corresponding to the Poincaré group can be used to obtain the conserved energy E, mo-
mentum P, angular momentum J, and center-of-mass integral of motion K in an arbitrary
form of relativistic dynamics

E = c
∑
a

maΓaDϕa +

c
∑
a<

∑
b

∫
dθ

{
exp

[
θ

c

(
Db +

∂

∂t

)]
(ϕ′at)

−1
(

χab − vi
a

∂χab

∂vi
a

)
+

exp
(
−θ

c
Da

)
ϕ−1

bt

(
χab − vi

b

∂χab

∂vi
b

)
+

θ

c

∫ 1

0
dτ exp

(
θ

c
(τD −Da)

)[
(Dϕ−1

bt )

(
χab − vi

b

∂χab

∂vi
b

)
+

ϕ−1
bt

(
∂χab

∂t
+ c

∂χab

∂θ

)]}
, (3.14)

Pi =
∑
a

maΓav
i
a −

∑
a<

∑
b

∫
dθ

{
exp

[
θ

c

(
Db +

∂

∂t

)] [
∂χab

∂vi
a

− ϕ′ai(ϕ
′
at)

−1
(

χab − vj
a

∂χab

∂vj
a

)]
+

exp
(
−θ

c
Da

)[
∂χab

∂vi
b

− ϕbiϕ
−1
bt

(
χab − vj

b

∂χab

∂vj
b

)]
+

θ

c

∫ 1

0
dτ exp

(
θ

c
(τD −Da)

)[
∂χab

∂xi
b

− (Dϕbiϕ
−1
bt )

(
χab − vj

b

∂χab

∂vj
b

)
−

ϕbiϕ
−1
bt

(
∂χab

∂t
+ c

∂χab

∂θ

)]}
, (3.15)

Ji = εijk

∑
a

maΓaxajvak −

εijk

∑
a<

∑
b

∫
dθ

{
exp

[
θ

c

(
Db +

∂

∂t

)]
xaj

[
∂χab

∂vk
a

−

ϕ′ak(ϕ
′
at)

−1
(

χab − vl
a

∂χab

∂vl
a

)]
+

exp
(
−θ

c
Da

)
xbj

[
∂χab

∂vk
b

− ϕbkϕ
−1
bt

(
χab − vl

b

∂χab

∂vl
b

)]
+

θ

c

∫ 1

0
dτ exp

(
θ

c
(τD −Da)

)[
xbj

∂χab

∂xk
b

+ vbj
∂χab

∂vk
b

+

(D(xbkϕbjϕ
−1
bt ))

(
χab − vl

b

∂χab

∂vl
b

)
+ xbkϕbjϕ

−1
bt

(
∂χab

∂t
+ c

∂χab

∂θ

)]}
, (3.16)

Ki =
∑
a

maΓa(−tvai + xai) +
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1
c

∑
a<

∑
b

∫
dθ

{
exp

[
θ

c

(
Db +

∂

∂t

)] [
ϕ′a

∂χab

∂vi
a

+

(xai − ϕ′aϕ
′
ai)(ϕ

′
at)

−1
(

χab − vj
a

∂χab

∂vj
a

)]
+ exp

(
−θ

c
Da

)[
ϕb

∂χab

∂vi
b

+

(xbi − ϕbϕbi)ϕ−1
bt

(
χab − vj

b

∂χab

∂vj
b

)]
+

θ

c

∫ 1

0
dτ exp

(
θ

c
(τD −Da)

)[
ϕb

∂χab

∂xi
b

+ (Dϕb)
∂χab

∂vi
b

+

(D(xbi − ϕbϕbi)ϕ−1
bt )

(
χab − vj

b

∂χab

∂vj
b

)
+

(xbi − ϕbϕbi)ϕ−1
bt

(
∂χab

∂t
+ c

∂χab

∂θ

)]}
. (3.17)

Substituting the definitions (1.37) or (1.40), (1.42) of instant or isotropic forms of
dynamics into expressions (3.14), (3.17), we can easily find conserved quantities in these
forms of relativistic dynamics. In [9] for the case of the instant form of dynamics these
quantities were derived and written down in a slightly different manner with introduction of
the formal inverse operator D−1. Such expressions are better adapted to the investigation
of expansions in the parameter c−1. The result obtained here, namely formulae (3.14)–
(3.17), is useful for the consideration of the coupling constant expansion. The equivalence
of both results can be directly demonstrated by formal calculation of the τ -integrals in
the expressions above.

Conclusion

The main purpose of this work was to examine the symmetry properties of the single-
time nonlocal Lagrangian description that arises from the Fokker-type action integrals
in various forms of relativistic dynamics. Evidently, the preservation of the Poincaré-
invariance under transition from manifestly invariant action to its single-time form was
easy to predict. The essential physical and technical complications in treating relativistic
single-time Lagrangians consist in the fact that they must depend on the derivatives of
arbitrary high order [13, 10]. A suitable tool for dealing with such objects is provided
by the theory of jet spaces and Lie-Bäcklund transformations [22–24]. In this respect
the basic result contained in this report is that nonlocal structure (1.27), (1.30) of the
interaction Lagrangians provides us with a useful ansatz for solution of the Poincaré-
invariance condition in any form of relativistic dynamics. As a consequence of this result
we find explicit expressions for the ten conserved quantities: energy, momentum, angular
momentum, and center-of-mass integral of motion.

From the physical point of view the obtained Lagrangians and conserved quantities may
be considered as a starting point for performing various approximations (for example, the
expansions in powers of coupling constant or c−1). Such approximations allow us to return
to more convenient predictive description in 6N -dimensional phase space [10–12]. On the
other hand, we can use a nonlocal Lagrangian structure in the investigation of invariance
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under other groups which are of interest in physics (Galilei, de Sitter or full conformal
groups).
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