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Abstract

Graph clustering is a very popular research field
with numerous practical applications. Here we fo-
cus on finding fuzzy clusters of nodes in unweighted,
undirected, and irreflexive graphs. We introduce
three new algorithms for fuzzy graph clustering
(Newman—Girvan NERFCM, Small World NER-
FCM, Signal NERFCM). Each of these three new
algorithms uses a popular algorithm for crisp graph
clustering and combines it with non-Euclidean rela-
tional fuzzy c-means clustering (NERFCM). Exper-
iments with artificial and real world data indicate
that all three proposed algorithms perform quite
well for compact clusters. For less compact clusters,
Newman—Girvan NERFCM and Signal NERFCM
also perform well. Newman—Girvan NERFCM is
more robust to cluster overlaps, and Signal NER-
FCM yields very smooth membership transitions.
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1. Introduction

Finding clusters in graphs is a popular research field
with numerous applications such as social network
analysis [1, 2], bioinformatics [3], scheduling [4],
or optimization of communication networks [5]. A
graph may be defined by a real-valued n x n adja-
cency matrix A, where n is the number of nodes, and
each element a;; € Rof A,4,j = 1,...,n, represents
the weight of the directed edge from node 7 to node
j. In this paper we consider unweighted, undirected,
and irreflexive graphs, so we require a;; € {0,1}

for all 4,7 = 1,...,n (unweighted), a;; = a;; for
all 4,5 = 1,...,n (undirected), and a;; = 0 for all
i=1,...,n (irreflexive). We may consider clusters

of nodes or clusters of edges. This paper deals with
clusters of nodes. A (node) cluster in a graph is a
subset of nodes. Pairs of nodes in the same cluster
are more strongly connected than pairs of nodes in
different clusters. We often have graph structures
that do not exhibit a well-separable cluster struc-
ture. Clusters may be overlapping, so we want to be
able to partially assign each node to several clusters,
which are then called fuzzy graph clusters.

Popular approaches to crisp graph clustering in-
clude the Newman—Girvan [6], the Small World [7],
and the Signal [8] algorithms. For a survey of these
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and other crisp graph clustering methods we re-
fer to [9]. Also for fuzzy graph clustering several
approaches have been proposed in the literature.
Nepusz et al. [10] minimize a modified fuzzy c—
means functional [11] by gradient-based optimiza-
tion. Zhang et al. [12] map each node to a point
in the Euclidean space and then use conventional
fuzzy c—means clustering. Havens et al. [13] opti-
mize a fuzzy generalization of the Newman—Girvan
centrality function [6]. Runkler et al. [14] transform
the graph adjacency matrix to a dissimilarity ma-
trix and then apply relational fuzzy clustering, more
specifically non—Euclidean relational fuzzy c—means
(NERFCM) [15]. The advantage of this approach
is that it can be easily extended to other relational
clustering schemes such as medoids [16] or possi-
bilistic clustering [17]. This paper extends the ideas
in [14] to perform fuzzy graph clustering using the
NERFCM model, but we do not apply NERFCM to
adjacency matrices but use the three popular crisp
graph clustering methods listed above (Newman—
Girvan, Small World, Signal) to produce dissimilar-
ity matrices which are then clustered by NERFCM.
So, this paper introduces and compares three new
algorithms for fuzzy graph clustering: Newman-—
Girvan NERFCM, Small World NERFCM, and Sig-
nal NERFCM.

This paper is structured as follows. In section 2
we briefly present the considered crisp graph clus-
tering algorithms Newman—Girvan, Small World,
and Signal. In section 3 we quickly review rela-
tional clustering, and specifically focus on the NER-
FCM model. In section 4 we modify the crisp
graph clustering algorithms from section 2 for fuzzy
graph clustering using NERFCM. In section 5 we
show some experiments with artificial and real world
data, where we compare the performance of our
three new fuzzy graph clustering algorithms. In
section 6 we give our conclusions and sketch some
promising future research directions in this field.

2. Crisp Graph Clustering

In this section we briefly present three popular algo-
rithms for crisp graph clustering: Newman—Girvan,
Small World, and Signal.

The idea of the Newman-Girvan algorithm [6] is
to iteratively remove the edges that contribute most
to the connectivity of the graph, so the graph is sep-



arated into several disconnected subgraphs which
represent the graph clusters. In each step of the
Newman—Girvan algorithm we compute the shortest
paths between all pairs of nodes. For a connected
graph with n nodes we have n-(n—1) shortest paths.
Then, for each edge we compute the so—called cen-
trality, i.e. we count, in how many of the shortest
paths the particular edge is contained. Finally, the
edge with the largest centrality (i.e. the edge that is
contained in most of the shortest paths) is removed.
This process is repeated, until the desired number
of disconnected subgraphs (clusters) is achieved.

The Small World algorithm [7] does not consider
graph connectivity but cycles in the graph, more
specifically cycles of length three, i.e. triangles. The
structure of the Small World algorithm is similar to
the Newman—Girvan algorithm. For each edge we
compute the coefficient

P Zij + 1
Y min{k; — 1,k; + 1}

(1)

where z;; is the number of triangles through the
edge between nodes ¢ and j, and k;, k; are the max-
imum number of possible triangles through nodes 7,
J, respectively. We remove the edge with the small-
est value of ¢;; and repeat the whole process until
the desired number of clusters is achieved.

The Signal algorithm [8] simulates the signal
propagation processes from each of the nodes i =
1,...,n through the graph. In each step one of the
nodes, say node i, is assigned one unit of signal, and
all other nodes have no signal. First the source node
i sends the signal to each of its neighbors. Next,
each node sends as many units of signals as it has
to each of its neighbors. This signal propagation
process is repeated T times. The resulting signal
values at the n nodes are stored as the it" row of
the n x n signal matrix S. The whole process is re-
peated for each other node as a source node. Then
we add ones to the main diagonal of the signal ma-
trix
i=1,...,n (2)
and run (crisp) (non-relational) c-means clustering
on S, which yields clusters of nodes.

Si = 85 + 1,

3. Relational Fuzzy Clustering

Our goal here is to find clusters of objects speci-
fied by a matrix D of pairwise dissimilarities, where
djr > 0 is the dissimilarity between objects j and
k, where 5,k = 1,...,n. If there is a feature vector
representation X = {x1,...,z,} € R so that for
each j,k =1,...,n we have d;; = ||z; — x|, where
|I.|| denotes the Euclidean norm, then we call D a
Euclidean distance matrix. For an n x n Euclidean
distance matrix D and a number ¢ € {2,...,n}
of clusters, the relational fuzzy c-means (RFCM)
model is defined by minimization of the objective
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function

n
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k=1
duw = 1 (6)

i=1
foralli=1,...,cand k =1,...,n. u;; denotes the

membership of object & in cluster 7.

We optimize Jrrem(U; D) by randomly initial-
izing U and then iteratively updating U using the
necessary conditions for extrema of Jrrom-
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i =1,...,¢, k = 1,...,n, until some termination

criterion holds, for example until all differences be-
tween successive estimates of u;, are smaller than a
given threshold.

When the distance matrix D is non—Euclidean,
then it is possible that RFCM can fail and the re-
sulting membership values may violate constraints
(4-6). For example, RFCM might yield member-
ships u;r < 0 or us, > 1. One way of solving this
problem is to transform D to a Euclidean distance
matrix Dg using the beta—spread method [15].

Dg=D+p3-B (8)
with a suitable 3 > 0, where B € [0, 1]"*"™ is the off—
diagonal matrix with b;; =1 for all¢,j =1,...,n,
i # j,and by =0 for all i = 1,...,n. The value of
[ is sucessively increased, i.e. higher values of 3 are
added to the off-diagonal elements of R, until the
Euclidean case is achieved, so that the constraints
(4-6) are satisfied. This algorithm is called the non-
Euclidean relational fuzzy c-means (NERFCM) al-
gorithm [15].

4. Fuzzy Graph Clustering based on
NERFCM

In this section we introduce three new fuzzy graph
clustering algorithms: Newman—Girvan NERFCM,
Small World NERFCM, and Signal NERFCM. In
each of these three algorithms we use one of the
three considered crisp graph clustering algorithms
(Newman—Girvan, Small World, and Signal) to



compute a dissimilarity matrix for which we then
find fuzzy clusters using NERFCM.

For the Newman—Girvan NERFCM algorithm we
first run the Newman—Girvan algorithm until termi-
nation, as presented in Section 2. For the resulting
graph we compute the centrality matrix again and
use this as a dissimilarity matrix D. Then we apply
NERFCM to D and finally obtain a fuzzy partition
matrix U.

For the Small World NERFCM algorithm we first
run the Small World algorithm as in Section 2 and
compute the connectivity matrix C for the resulting
graph. Connectivity is a similarity measure, so we
convert each connectivity value ¢;; to a dissimilarity
value d;; using

Cij — Cmin
dl] ! Cmax — Cmin (9)
where ¢pin and ¢pmax are the minimum and maxi-
mum elements of C, respectively. Finally, we apply
NERFCM to D and obtain a fuzzy partition matrix
U.

For the Signal NERFCM algorithm we use the
Signal algorithm just as in Section 2 but instead of
(crisp) (non-relational) c-means clustering we ap-
ply NERFCM to S and obtain a fuzzy partition
matrix U.

5. Experiments

In this section we present two sets of experiments
with artificial and real world data sets in order to as-
sess and compare the performance of the three pro-
posed fuzzy graph clustering algorithms Newman—
Girvan NERFCM, Small World NERFCM, and Sig-
nal NERFCM.

In the first set of experiments we consider graphs
with five different topologies: complete mesh, cycle,
star, incomplete mesh, and tree. Each of the graphs
contains ¢ € {5,10} nodes. Fig. 1 illustrates the five
different topologies for ¢ = 5 nodes. In each of our
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Figure 1: Five different graph topologies.

experiments we construct a graph by first building
two equal subgraphs of one of these five topologies
and then connecting these two subgraphs with

one single link: one link with r € {2,4,6,8,10}
additional nodes (i.e. » + 1 additional edges)
between one randomly chosen node in subgraph
1 and the corresponding node in subgraph 2, or

multiple links: s € {1,...,5} links with »r = 5
nodes each (i.e. 5 - s additional nodes and 6 - s
additional edges) between s randomly chosen
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nodes in subgraph 1 and the corresponding
nodes in subgraph 2.

Figs. 2 and 3 illustrate examples for the two differ-
ent linking schemes (single link with length r = 8,
and s = 3 multiple links) for two complete mesh
clusters with ¢ = 5 nodes each. To avoid intersect-
ing edges we have flipped one of the subgraphs in
the Fig. 3.

Figure 2: Single link data set for two complete mesh
clusters, ¢ = 5 nodes, length r = 8.

Figure 3: Multiple link data set for two complete
mesh clusters, ¢ = 5 nodes, s = 3 links.

For all experiments we have used random initial-
ization of U and ¢ = 2. We have tested several
different values for the parameter T of the Small
World NERFCM algorithm and used the ones that
yielded the subjectively best results for most exper-
iments: T = 2 for incomplete meshes, T' = 3 for
cycles and stars, T = 4 for trees, and T' = 5 for
complete meshes.

In our experiments we first consider the single link
case. We set the number of nodes in each subgraph
to ¢ = 10, so for a link with r € {2,4,6, 8,10} nodes
we have a total of n =2 q+r € {22,24,26, 28,30}
nodes. We sort the node indices sothati=1,...,10
are the indices for subgraph 1,7 =11,...,10+r are
the indices for the link (from subgraph 1 to sub-
graph 2), and ¢ = 11 4 r,...,20 + r are the indices
for subgraph 2. Figs. 4-8 show the membership
values for cluster 1 (associated with the first sub-
graph) for the n € {22,24,26,28,30} nodes of the
two subgraphs and the link. The vertical axes cor-
respond to the ranges u € [—0.1,1.1], so points at
u = 0 and w = 1 are not hidden by the bound-
ing boxes of the graphs. Each row in Figs. 4-8
shows the length r € {2,4,6,8,10} of the single link
used in the respective experiment. Each column in
Figs. 4-8 shows the results for one of the three al-
gorithms Newman—Girvan NERFCM, Small World
NERFCM, and Signal NERFCM. Due to limited
space we do not show “NERFCM?” in these graphs.

For two complete meshes (Fig. 4) all three algo-
rithms produce memberships that match our intu-
itive expectation: The first ten nodes (from sub-
graph 1) obtain a high membership in cluster 1,
and the last ten nodes (from subgraph 2) obtain a
low membership in cluster 1. For the nodes of the
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Figure 4: Memberships for two complete meshes
connected by one link of length 2,...,10.
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Figure 5: Memberships for for two cycles connected
by one link of length 2, ..., 10.
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Figure 6: Memberships for two stars connected by
one link of length 2, ..., 10.
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Figure 7: Memberships for two incomplete meshes
connected by one link of length 2,...,10.
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Figure 8: Memberships for two trees connected by
one link of length 2,...,10.

link between subgraphs 1 and 2 the memberships
more or less gradually change from high to low. For
Newman—Girvan NERFCM (left column) the mem-
berships change almost linearly as we proceed from
subgraph 1 to subgraph 2 (from left to right). For
Small World NERFCM and Signal NERFCM (mid-
dle and right columns) the change of memberships
is more abrupt and occurs at one of the link nodes,
but not always at the middle nodes at i = 10+ r/2
or i =11+ r/2 as we might have expected.

For two cycles (Fig. 5) Newman—Girvan NER-
FCM yields very similar results as for two complete
meshes (Fig. 4) but less clearer cluster preferences
for the nodes in the subgraphs, Small World NER-
FCM fails, and Signal NERFCM yields very clear
cluster preferences for both subgraphs and a very
smooth membership transition along the link.

For two stars, two incomplete meshes and two
trees (Figs. 6-8) we obtain quite similar results as
for two cycles (Fig. 5): Newman—Girvan NERFCM



and Signal NERFCM yield quite good results but
Small World NERFCM fails. The most difficult
topology seems to be the two trees graph.

After the single link case we now consider the
multiple link case. Here we set the number of nodes
in each subgraph to ¢ = 5, so for s € {1,...,5}
links with » = 5 nodes each we have a total of
n=2-q+5-s € {15,20,25, 30,35} nodes. For clar-
ity and easier comparison we will not display the
memberships for the nodes in the multiple links but
only for the nodes in the two subgraphs. We sort
the node indices so that i = 1,...,5 are the indices
for subgraph 1 and ¢ = 6, ..., 10 are the indices for
the for subgraph 2. Figs. 9-13 show the member-
ship values for cluster 1 for the n = 10 nodes of the
two subgraphs (not the links).

Newman—Girvan Small World Signal
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Figure 9: Memberships for two complete meshes
connected by 1,...,5 links.
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Figure 10: Memberships for for two cycles con-
nected by 1,...,5 links.

For two complete meshes (Fig. 9) all three algo-
rithms correctly assign the first five nodes (subgraph
1) to cluster 1 and the other five nodes (subgraph 2)
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Figure 11: Memberships for two stars connected by
1,...,5 links.
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Figure 12: Memberships for two incomplete meshes
connected by 1,...,5 links.

Newman—Girvan Small World Signal
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Figure 13: Memberships for two trees connected by
1,...,5 links.



to cluster 2. Only Signal NERFCM fails for s = 4
and s = 5 links.

For all other topologies (Figs. 10-13) Newman—
Girvan NERFCM and Signal NERFCM both work
quite well for a low number s of links but are more
likely to produce bad results as the number s of
links increases, i.e. the more the two subclusters are
merged. Newman—Girvan NERFCM is a little more
robust against an increasing number of links than
Signal NERFCM. The Small World NERFCM algo-
rith almost always fails, except for two incomplete
meshes with s =1 or s = 2 links.

In our second set of experiments we consider
Zachary’s karate club benchmark data set [18]
which represents a social network of friendships be-
tween 34 members of a karate club at a US univer-
sity in the 1970s. In this graph, each node repre-
sents a member of the karate club, and each edge
represents a tie (or connection) between two club
members. The (nonempty irreflexive unweighted
undirected) graph has 34 nodes and 78 edges. It
is well known from the literature that this graph
contains two well separated clusters associated with
two key members of the karate club.

Figs. 14-16 show the results of our three new
fuzzy graph clustering algorithms for this data set,
where for the Small World NERFCM algorithm we
set T' = 4. For the karate club graphs we use the
same layout as in [9]. The grey values of the nodes
represent the memberhips in one of the clusters,
where black and white correspond to the minimum
and maximum memberships, respectively.

Figure 14: Memberships for the karate data set
(Newman—Girvan NERFCM).

Figure 15: Memberships for the karate data set
(Small World NERFCM).

Figure 16: Memberships for the karate data set
(Signal NERFCM).

Newman—Girvan NERFCM (Fig. 14) finds two
clusters that match well the findings from the liter-
ature (one cluster on the left and one cluster on the
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right), and the two nodes that are often reported as
the cluster centers in the literature obtain the high-
est and lowest memberships (black and white cir-
cles). The grey values change quite smoothly from
dark grey to light grey as we proceed from left to
right.

Small World NERFCM (Fig. 15) produces mem-
berships that do not match the literature at all.

Signal NERFCM (Fig. 16) matches quite well the
partition reported in the literature. It does not find
the cluster centers from the literature but the tran-
sition of the grey values from left to right is much
smoother than for Newman—Grivan NERFCM.

6. Conclusions

We have introduced three new methods for fuzzy
graph clustering that combine popular non—fuzzy
graph clustering algorithms with non—FEuclidean
relational fuzzy c-means clustering (NERFCM).
We call these three new algorithms Newman-—
Girvan NERFCM, Small World NERFCM, and
Signal NERFCM. Our experiments with artificial
and real world data sets indicate that all three
algorithms perform quite well for compact clus-
ters (complete meshes). For less compact clusters
Newman—Girvan NERFCM and Signal NERFCM
also work quite well but Small World NERFCM
fails. Newman—Girvan NERFCM is more robust to
cluster overlaps (more links between the subgraphs)
than Signal NERFCM but Signal NERFCM yields
smoother membership transitions than Newman-—
Girvan NERFCM.

Future work in this field should address the fol-
lowing questions: How do the proposed algorithms
perform for more than two clusters? How is the per-
formance for other relational clustering schemes, for
example NERPCM instead of NERFCM? Can other
non—fuzzy graph clustering algorithms be fuzzified
in a similar way?
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