Proceedings of the 2016 International Conference on Artificial Intelligence: Technologies and Applications

Deep Learning Applied to Mobile Phone Data for Individual Income Classification

Authors
Pål Sundsøy, Johannes Bjelland, Bjørn-Atle Reme, Asif M.Iqbal, Eaman Jahani
Corresponding Author
Pål Sundsøy
Available Online January 2016.
DOI
https://doi.org/10.2991/icaita-16.2016.24How to use a DOI?
Keywords
deep learning; mobile phone data; poverty;household income; Big Data Analytics; Machine learning; Asia, Mobile network operator; metadata; algorithms
Abstract
Deep learning has in recent years brought breakthroughs in several domains, most notably voice and image recognition. In this work we extend deep learning into a new application domain - namely classification on mobile phone datasets. Classic machine learning methods have produced good results in telecom prediction tasks, but are underutilized due to resource-intensive and domain-specific feature engineering. Moreover, traditional machine learning algorithms require separate feature engineering in different countries. In this work, we show how socio-economic status in large de-identified mobile phone datasets can be accurately classified using deep learning, thus avoiding the cumbersome and manual feature engineering process. We implement a simple deep learning architecture and compare it with traditional data mining models as our benchmarks. On average our model achieves 77% AUC on test data using location traces as the sole input. In contrast, the benchmarked state-of-the-art data mining models include various feature categories such as basic phone usage, top-up pattern, handset type, social network structure and individual mobility. The traditional machine learning models achieve 72% AUC in the best-case scenario. We believe these results are encouraging since average regional household income is an important input to a wide range of economic policies. In underdeveloped countries reliable statistics of income is often lacking, not frequently updated, and is rarely fine-grained to sub-regions of the country. Making income prediction simpler and more efficient can be of great help to policy makers and charity organizations – which will ultimately benefit the poor.
Open Access
This is an open access article distributed under the CC BY-NC license.

Download article (PDF)

Proceedings
2016 International Conference on Artificial Intelligence: Technologies and Applications
Part of series
Advances in Intelligent Systems Research
Publication Date
January 2016
ISBN
978-94-6252-162-9
ISSN
1951-6851
DOI
https://doi.org/10.2991/icaita-16.2016.24How to use a DOI?
Open Access
This is an open access article distributed under the CC BY-NC license.

Cite this article

TY  - CONF
AU  - Pål Sundsøy
AU  - Johannes Bjelland
AU  - Bjørn-Atle Reme
AU  - Asif M.Iqbal
AU  - Eaman Jahani
PY  - 2016/01
DA  - 2016/01
TI  - Deep Learning Applied to Mobile Phone Data for Individual Income Classification
BT  - 2016 International Conference on Artificial Intelligence: Technologies and Applications
PB  - Atlantis Press
SP  - 96
EP  - 99
SN  - 1951-6851
UR  - https://doi.org/10.2991/icaita-16.2016.24
DO  - https://doi.org/10.2991/icaita-16.2016.24
ID  - Sundsøy2016/01
ER  -