Proceedings of the 3rd International Conference on Mechatronics Engineering and Information Technology (ICMEIT 2019)

A Method for the Detection of Fake Reviews based on Temporal Features of Reviews and Comments

Authors
Wenqian Liu, Jingsha He, Song Han, Nafei Zhu
Corresponding Author
Wenqian Liu
Available Online April 2019.
DOI
https://doi.org/10.2991/icmeit-19.2019.97How to use a DOI?
Keywords
fake reviews; products speculation; reviewing records; Isolation Forest algorithm.
Abstract
Online reviews and comments have become an important resource for various decision making processes, such as sale and buy decisions. The truthfulness of online reviews is thus critical for both buyers and sellers since fake reviews will affect customer’s decisions due to misleading description and deceptive selling. This can cause financial loses for innocent customers. Fake review detection has thus attracted a lot of attention. However, most shopping websites have only focused on dealing with problematic reviews and comments. In this paper, we propose a method for the detection of outlier reviews based on reviewing records associated with products instead of just the reviews and comments. We first analyze the characteristics of such data using a crawled Amazon China dataset, revealing that the reviewing records of each product is similar for normal products. In the proposed method, we first extract the reviewing records of products to a temporal feature vector. We then develop an isolation forest algorithm to detect the outlier reviews of products based on the reviewing records of reviews and comments. We will verify the effectiveness of our proposed method and compare it to some existing temporal outlier detection methods using the crawled Amazon China dataset. We will also study the impact caused by the parameter selection of the reviewing records.
Open Access
This is an open access article distributed under the CC BY-NC license.

Download article (PDF)

Proceedings
Part of series
Advances in Computer Science Research
Publication Date
April 2019
ISBN
978-94-6252-708-9
ISSN
2352-538X
DOI
https://doi.org/10.2991/icmeit-19.2019.97How to use a DOI?
Open Access
This is an open access article distributed under the CC BY-NC license.

Cite this article

TY  - CONF
AU  - Wenqian Liu
AU  - Jingsha He
AU  - Song Han
AU  - Nafei Zhu
PY  - 2019/04
DA  - 2019/04
TI  - A Method for the Detection of Fake Reviews based on Temporal Features of Reviews and Comments
PB  - Atlantis Press
SP  - 602
EP  - 608
SN  - 2352-538X
UR  - https://doi.org/10.2991/icmeit-19.2019.97
DO  - https://doi.org/10.2991/icmeit-19.2019.97
ID  - Liu2019/04
ER  -