Proceedings of the Soedirman International Conference on Mathematics and Applied Sciences (SICOMAS 2021)

Solution Formula of the Half-Space Model Problem for Incompressible Fluid Flow

Authors
Maria Leonids Berlian Candra Dewi1, Sri Maryani1, *, Ari Wardayani1, Bambang Hendriya Guswanto1
1Faculty of Mathematics and Natural Sciences, Jenderal Soedirman University, Indonesia
*Corresponding author. Email: sri.maryani@unsoed.ac.id
Corresponding Author
Sri Maryani
Available Online 25 May 2022.
DOI
https://doi.org/10.2991/apr.k.220503.009How to use a DOI?
Keywords
Incompressible; Fourier transform; Fluid flows; Linearized equations
Abstract

In this paper we determine a slightly detailed the solution formula of the incompressible fluid flows by using Fourier transform in N-dimensional Euclidean space (N≥ 2) for the linearized equations. For further research, from this result we can estimate the boundedness of the operator families. This research is based on Shibata and Shimizu article.

Copyright
© 2022 The Authors. Published by Atlantis Press International B.V.
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license.

Download article (PDF)

Volume Title
Proceedings of the Soedirman International Conference on Mathematics and Applied Sciences (SICOMAS 2021)
Series
Advances in Physics Research
Publication Date
25 May 2022
ISBN
978-94-6239-579-4
ISSN
2352-541X
DOI
https://doi.org/10.2991/apr.k.220503.009How to use a DOI?
Copyright
© 2022 The Authors. Published by Atlantis Press International B.V.
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license.

Cite this article

TY  - CONF
AU  - Maria Leonids Berlian Candra Dewi
AU  - Sri Maryani
AU  - Ari Wardayani
AU  - Bambang Hendriya Guswanto
PY  - 2022
DA  - 2022/05/25
TI  - Solution Formula of the Half-Space Model Problem for Incompressible Fluid Flow
BT  - Proceedings of the Soedirman International Conference on Mathematics and Applied Sciences (SICOMAS 2021)
PB  - Atlantis Press
SP  - 40
EP  - 43
SN  - 2352-541X
UR  - https://doi.org/10.2991/apr.k.220503.009
DO  - https://doi.org/10.2991/apr.k.220503.009
ID  - Dewi2022
ER  -