International Journal of Computational Intelligence Systems

Volume 11, Issue 1, January 2018, Pages 540 - 559

A gene expression programming algorithm for discovering classification rules in the multi-objective space

Authors
Alain Guerrero-Enamorado1, alaing@uci.cu, Carlos Morell2, cmorellp@uclv.edu.cu, Ventura Sebastián3, 4, 5, sventura@uco.es
1Universidad de las Ciencias Informaticás (UCI), Habana, Cuba.
2Universidad Central “Marta Abreu” de Las Villas (UCLV), Villa Clara, Cuba.
3Department of Computer Science and Numerical Analysis, University of Cordoba, Spain
4Faculty of Computing and Information Technology, King Abdulaziz University, Saudi Arabia
5Knowledge Discovery and Intelligent Systems in Biomedicine Laboratory, Maimonides Biomedical Research Institute of Cordoba, Spain
Corresponding Author
Alain Guerrero-Enamoradoalaing@uci.cu
Received 26 May 2017, Accepted 22 December 2017, Available Online January 2018.
DOI
https://doi.org/10.2991/ijcis.11.1.40How to use a DOI?
Keywords
Gene expression programming (GEP), Reference Point Based Multi-objective Evolutionary Algorithm (R-NSGA-II), Multi-objetive Evolutionary Algorithm (MOEA), Multi-objetive classification, Classification
Abstract
Multi-objective evolutionary algorithms have been criticized when they are applied to classification rule mining, and, more specifically, in the optimization of more than two objectives due to their computational complexity. It is known that a multi-objective space is much richer to be explored than a single-objective space. In consequence, there are only few multi-objective algorithms for classification and their empirical assessed is quite limited. On the other hand, gene expression programming has emerged as an alternative to carry out the evolutionary process at genotypic level in a really efficient way. This paper introduces a new multi-objective algorithm for discovering classification rules, AR-NSGEP (Adaptive Reference point based Non-dominated Sorting with Gene Expression Programming). It is a multi-objective evolution of a previous single-objective algorithm. In AR-NSGEP, the multi-objective search was based on the wellknown R-NSGA-II algorithm, replacing GA with GEP technology. Four objectives led the rules-discovery process, three of them (sensitivity, specificity and precision) were focused on promoting accuracy and the fourth (simpleness) on the interpretability of rules. AR-NSGEP was evaluated on several benchmark data sets and compared against six rule-based classifiers widely used. The AR-NSGEP, with four-objectives, achieved a significant improvement of the AUC metric with espect to most of the algorithms assessed, while the predictive accuracy and number of rules in the obtained models reached to acceptable results.
Copyright
© 2018, the Authors. Published by Atlantis Press.
Open Access
This is an open access article under the CC BY-NC license (http://creativecommons.org/licences/by-nc/4.0/).

Download article (PDF)
View full text (HTML)

Journal
International Journal of Computational Intelligence Systems
Volume-Issue
11 - 1
Pages
540 - 559
Publication Date
2018/01
ISSN
1875-6883
DOI
https://doi.org/10.2991/ijcis.11.1.40How to use a DOI?
Copyright
© 2018, the Authors. Published by Atlantis Press.
Open Access
This is an open access article under the CC BY-NC license (http://creativecommons.org/licences/by-nc/4.0/).

Cite this article

TY  - JOUR
AU  - Alain Guerrero-Enamorado
AU  - Carlos Morell
AU  - Sebastián Ventura
PY  - 2018/01
DA  - 2018/01
TI  - A gene expression programming algorithm for discovering classification rules in the multi-objective space
JO  - International Journal of Computational Intelligence Systems
SP  - 540
EP  - 559
VL  - 11
IS  - 1
SN  - 1875-6883
UR  - https://doi.org/10.2991/ijcis.11.1.40
DO  - https://doi.org/10.2991/ijcis.11.1.40
ID  - Guerrero-Enamorado2018/01
ER  -