International Journal of Computational Intelligence Systems

Volume 12, Issue 1, November 2018, Pages 59 - 78

Optimization of quality measures in association rule mining: an empirical study

Authors
J. M. Luna1, 4, M. Ondra2, H. M. Fardoun3, S. Ventura1, 3, 4, *
1Department of Computer Science and Numerical Analysis, University of Cordoba, Cordoba, Spain
2Department of Mathematical Analysis and Applications of Mathematics, Palacký University, Czech Republic
3Faculty of Computing and Information Technology, King Abdulaziz University, Saudi Arabia
4Knowledge Discovery and Intelligent Systems in Biomedicine Laboratory, Maimonides Biomedical Research Institute of Cordoba, Spain
*Corresponding author. Email: sventura@uco.es
Corresponding Author
S. Ventura
Received 27 January 2018, Accepted 6 August 2018, Available Online 2 November 2018.
DOI
https://doi.org/10.2991/ijcis.2018.25905182How to use a DOI?
Keywords
Quality measures, Association rule mining, Optimization, Empirical study
Abstract

In the association rule mining field many different quality measures have been proposed over time with the aim of quantifying the interestingness of each discovered rule. In evolutionary computation, many of these metrics have been used as functions to be optimized, but the selection of a set of suitable quality measures for each specific problem is not a trivial task. The aim of this paper is to review the most widely used quality measures, analyze their properties from an empirical standpoint and, as a result, ease the process of selecting a subset of them for tackling the task of mining association rules through evolutionary computation. The experimental analysis includes twenty metrics, thirty datasets and a diverse set of algorithms to describe which quality measures are related (or unrelated) so they should (or should not) be used at time. A series of recomendations are therefore provided according to which quality measures are easily optimized, what set of measures should be used to optimize the whole set of metrics, or which measures are hardly optimized by any other.

Copyright
© 2018, the Authors. Published by Atlantis Press.
Open Access
This is an open access article under the CC BY-NC license (http://creativecommons.org/licences/by-nc/4.0/).

Download article (PDF)
View full text (HTML)

Journal
International Journal of Computational Intelligence Systems
Volume-Issue
12 - 1
Pages
59 - 78
Publication Date
2018/11
ISSN
1875-6883
DOI
https://doi.org/10.2991/ijcis.2018.25905182How to use a DOI?
Copyright
© 2018, the Authors. Published by Atlantis Press.
Open Access
This is an open access article under the CC BY-NC license (http://creativecommons.org/licences/by-nc/4.0/).

Cite this article

TY  - JOUR
AU  - J. M. Luna
AU  - M. Ondra
AU  - H. M. Fardoun
AU  - S. Ventura
PY  - 2018
DA  - 2018/11
TI  - Optimization of quality measures in association rule mining: an empirical study
JO  - International Journal of Computational Intelligence Systems
SP  - 59
EP  - 78
VL  - 12
IS  - 1
SN  - 1875-6883
UR  - https://doi.org/10.2991/ijcis.2018.25905182
DO  - https://doi.org/10.2991/ijcis.2018.25905182
ID  - Luna2018
ER  -