Journal of Nonlinear Mathematical Physics

Volume 11, Issue Supplement 1, October 2004, Pages 66 - 71

von Neumann Quantization of Aharonov-Bohm Operator with Interaction: Scattering Theory, Spectral and Resonance Properties

Authors
Gilbert Honnouvo, Mahouton Norbert Hounkonnou, Gabriel Yves Hugues
Corresponding Author
Gilbert Honnouvo
Available Online 1 October 2004.
DOI
https://doi.org/10.2991/jnmp.2004.11.s1.8How to use a DOI?
Abstract
Using the theory of self-adjoint extensions, we study the interaction model formally given by the Hamiltonian H + V (r), where H is the Aharonov-Bohm Hamiltonian and V (r) is the -type interaction potential on the cylinder of radius R . We give the mathematical definition of the model, the self-adjointness of the Hamiltonian and prvide relevant spectral properties, results for resonance effects and stationary scattering characteristics.
Open Access
This is an open access article distributed under the CC BY-NC license.

Download article (PDF)

Journal
Journal of Nonlinear Mathematical Physics
Volume-Issue
11 - Supplement 1
Pages
66 - 71
Publication Date
2004/10
ISBN
91-974824-2-0
ISSN (Online)
1776-0852
ISSN (Print)
1402-9251
DOI
https://doi.org/10.2991/jnmp.2004.11.s1.8How to use a DOI?
Open Access
This is an open access article distributed under the CC BY-NC license.

Cite this article

TY  - JOUR
AU  - Gilbert Honnouvo
AU  - Mahouton Norbert Hounkonnou
AU  - Gabriel Yves Hugues
PY  - 2004
DA  - 2004/10
TI  - von Neumann Quantization of Aharonov-Bohm Operator with Interaction: Scattering Theory, Spectral and Resonance Properties
JO  - Journal of Nonlinear Mathematical Physics
SP  - 66
EP  - 71
VL  - 11
IS  - Supplement 1
SN  - 1776-0852
UR  - https://doi.org/10.2991/jnmp.2004.11.s1.8
DO  - https://doi.org/10.2991/jnmp.2004.11.s1.8
ID  - Honnouvo2004
ER  -