Journal of Nonlinear Mathematical Physics

Volume 10, Issue Supplement 1, August 2003, Pages 62 - 71

The Derivative Nonlinear Schrödinger Equation in Analytic Classes

Authors
Zoran GRUJIC, Henrik KALISCH
Corresponding Author
Zoran GRUJIC
Available Online 9 December 2006.
DOI
https://doi.org/10.2991/jnmp.2003.10.s1.5How to use a DOI?
Abstract
The derivative nonlinear Schrödinger equation is shown to be locally well-posed in a class of functions analytic on a strip around the real axis. The main feature of the result is that the width of the strip does not shrink in time. To overcome the derivative loss, Kato-type smoothing results and space-time estimates are used.
Open Access
This is an open access article distributed under the CC BY-NC license.

Download article (PDF)

Journal
Journal of Nonlinear Mathematical Physics
Volume-Issue
10 - 100
Pages
62 - 71
Publication Date
2006/12
ISBN
91-631-4340-2
ISSN
1402-9251
DOI
https://doi.org/10.2991/jnmp.2003.10.s1.5How to use a DOI?
Open Access
This is an open access article distributed under the CC BY-NC license.

Cite this article

TY  - JOUR
AU  - Zoran GRUJIC
AU  - Henrik KALISCH
PY  - 2006
DA  - 2006/12
TI  - The Derivative Nonlinear Schrödinger Equation in Analytic Classes
JO  - Journal of Nonlinear Mathematical Physics
SP  - 62
EP  - 71
VL  - 10
IS  - Supplement 1
SN  - 1402-9251
UR  - https://doi.org/10.2991/jnmp.2003.10.s1.5
DO  - https://doi.org/10.2991/jnmp.2003.10.s1.5
ID  - GRUJIC2006
ER  -