Journal of Nonlinear Mathematical Physics

Volume 9, Issue 4, November 2001, Pages 475 - 482

On the Lie Symmetries of Kepler­Ermakov Systems

Authors
Ayse Karasu Kalkanli, Hasan YILDIRIM
Corresponding Author
Ayse Karasu Kalkanli
Available online November 2001.
DOI
https://doi.org/10.2991/jnmp.2002.9.4.8How to use a DOI?
Keywords
Abstract
In this work, we study the Lie-point symmetries of Kepler­Ermakov systems presented by C Athorne in J. Phys. A24 (1991), L1385­L1389. We determine the forms of arbitrary function H(x, y) in order to find the members of this class possessing the sl(2, R) symmetry and a Lagrangian. We show that these systems are usual Ermakov systems with the frequency function depending on the dynamical variables.
Copyright
© The authors.
Open Access
This is an open access article distributed under the CC BY-NC license.

Download article (PDF)

Journal
Journal of Nonlinear Mathematical Physics
Volume-Issue
9 - 4
Pages
475 - 482
Publication Date
2001/11
ISSN
1402-9251
DOI
https://doi.org/10.2991/jnmp.2002.9.4.8How to use a DOI?
Copyright
© The authors.
Open Access
This is an open access article distributed under the CC BY-NC license.

Cite this article

TY  - JOUR
AU  - Ayse Karasu Kalkanli
AU  - Hasan Yildirim
PY  - 2001/11
DA  - 2001/11
TI  - On the Lie Symmetries of Kepler­Ermakov Systems
JO  - Journal of Nonlinear Mathematical Physics
SP  - 475
EP  - 482
VL  - 9
IS  - 4
SN  - 1402-9251
UR  - https://doi.org/10.2991/jnmp.2002.9.4.8
DO  - https://doi.org/10.2991/jnmp.2002.9.4.8
ID  - KarasuKalkanli2001/11
ER  -