Proceedings of the 2015 International Conference on Sustainable Energy and Environmental Engineering

Research on Power Short-term Prediction of the Photovoltaic System Based on Grey Relational Analysis and Quantum Particle Swarm Optimization

Authors
Qingwu Gong, Jiazhi Lei, Haining Zhang, Yang Lei, Si Tan
Corresponding Author
Qingwu Gong
Available Online October 2015.
DOI
https://doi.org/10.2991/seee-15.2015.23How to use a DOI?
Keywords
photovoltaic power prediction; grey relational analysis; battery characteristics; quantum particle swarm optimization; Support vector machine; Wulan photovoltaic power station
Abstract
Output power of Photovoltaic generation system is influenced by temperature, humidity, solar radiation intensity and so on. The effects of three kinds of external climate conditions, including temperature, humidity, solar radiation intensity, on photovoltaic output power were anal sized in detail in this paper, and then similar days for photovoltaic power prediction were selected based on grey relational analysis. The quantum particle swarm optimization method for optimizing kernel parameters of support vector machine was immediately introduced. In line with the data of similar days and optimization parameters of kernel function, a new power short-term prediction method of the photovoltaic system based on grey relational analysis and quantum particle swarm optimization was put up in this paper. According to the data of photovoltaic output power and meteorological monitoring data of Wulan photovoltaic power station, the method mentioned is likely verified. Instances proved that this new power short-term prediction method has great advantages in terms of speed, accuracy and stability.
Open Access
This is an open access article distributed under the CC BY-NC license.

Download article (PDF)

Proceedings
2015 International Conference on Sustainable Energy and Environmental Engineering
Part of series
Advances in Engineering Research
Publication Date
October 2015
ISBN
978-94-6252-119-3
ISSN
2352-5401
DOI
https://doi.org/10.2991/seee-15.2015.23How to use a DOI?
Open Access
This is an open access article distributed under the CC BY-NC license.

Cite this article

TY  - CONF
AU  - Qingwu Gong
AU  - Jiazhi Lei
AU  - Haining Zhang
AU  - Yang Lei
AU  - Si Tan
PY  - 2015/10
DA  - 2015/10
TI  - Research on Power Short-term Prediction of the Photovoltaic System Based on Grey Relational Analysis and Quantum Particle Swarm Optimization
BT  - 2015 International Conference on Sustainable Energy and Environmental Engineering
PB  - Atlantis Press
SN  - 2352-5401
UR  - https://doi.org/10.2991/seee-15.2015.23
DO  - https://doi.org/10.2991/seee-15.2015.23
ID  - Gong2015/10
ER  -